# Packing tight Hamilton cycles 

Po-Shen Loh<br>Carnegie Mellon University

Joint work with Alan Frieze and Michael Krivelevich

Definition
A cycle is Hamiltonian if it visits every vertex exactly once.

- (Dirac '52.) Degrees $\geq \frac{n}{2} \Rightarrow$ Hamilton cycle.


## Definition

A cycle is Hamiltonian if it visits every vertex exactly once.

- (Dirac '52.) Degrees $\geq \frac{n}{2} \Rightarrow$ Hamilton cycle.
- (Nash-Williams '71.) Same $\Rightarrow \frac{5}{224} n$ disjoint H-cycles.


## DEFINITION

A cycle is Hamiltonian if it visits every vertex exactly once.

- (Dirac '52.) Degrees $\geq \frac{n}{2} \Rightarrow$ Hamilton cycle.
- (Nash-Williams '71.) Same $\Rightarrow \frac{5}{224} n$ disjoint H-cycles.
- (Christofides, Kühn, Osthus '10.) If degrees $\geq\left(\frac{1}{2}+o(1)\right) n$, then there are $\frac{n}{8}$ disjoint H-cycles.
- (Christofides, Kühn, Osthus '10.) d-regular graphs with $d \geq\left(\frac{1}{2}+o(1)\right) n$ can be $(1-o(1))$-packed with H-cycles.


## DEFINITION

A cycle is Hamiltonian if it visits every vertex exactly once.

- (Dirac '52.) Degrees $\geq \frac{n}{2} \Rightarrow$ Hamilton cycle.
- (Nash-Williams '71.) Same $\Rightarrow \frac{5}{224} n$ disjoint H-cycles.
- (Christofides, Kühn, Osthus '10.) If degrees $\geq\left(\frac{1}{2}+o(1)\right) n$, then there are $\frac{n}{8}$ disjoint H-cycles.
- (Christofides, Kühn, Osthus '10.) d-regular graphs with $d \geq\left(\frac{1}{2}+o(1)\right) n$ can be $(1-o(1))$-packed with H-cycles.


## REMARK

Cannot hope to pack regular graphs with H-cycles if $d<\frac{n}{2}$.

## DEFINITION

Erdős-Rényi $G_{n, p}$ : edges appear independently with probability $p$.

- (Komlós, Szemerédi '83; Kors̆unov '77.) $G_{n, p}$ is Hamiltonian whp if $p=\frac{\log n+\log \log n+\omega(n)}{n}$ with $\omega(n) \rightarrow \infty$.


## DEFINITION

Erdős-Rényi $G_{n, p}$ : edges appear independently with probability $p$.

- (Komlós, Szemerédi '83; Kors̆unov '77.) $G_{n, p}$ is Hamiltonian whp if $p=\frac{\log n+\log \log n+\omega(n)}{n}$ with $\omega(n) \rightarrow \infty$.


## DEFINITION (RANDOM GRAPH PROCESS)

Starting with $n$ isolated vertices, add one random edge per round.

- (Bollobás '84.) In the random graph process, whp an H-cycle appears as soon as all degrees are at least 2.


## DEFINITION

Erdős-Rényi $G_{n, p}$ : edges appear independently with probability $p$.

- (Komlós, Szemerédi '83; Kors̆unov '77.) $G_{n, p}$ is Hamiltonian whp if $p=\frac{\log n+\log \log n+\omega(n)}{n}$ with $\omega(n) \rightarrow \infty$.


## Definition (Random graph process)

Starting with $n$ isolated vertices, add one random edge per round.

- (Bollobás '84.) In the random graph process, whp an H-cycle appears as soon as all degrees are at least 2.
- (Bollobás, Frieze '85.) For any fixed $k$, whp $k$ disjoint H-cycles appear as soon as all degrees are at least $2 k$.
- (Kim, Wormald '01.) For fixed $r$, random $r$-regular graphs contain $\left\lfloor\frac{r}{2}\right\rfloor$ disjoint H-cycles whp.

Conjecture (Frieze, Krivelevich)
$G_{n, p}$ contains $\left\lfloor\frac{\delta}{2}\right\rfloor$ disjoint H-cycles whp, where $\delta=$ min. degree.

Conjecture (Frieze, Krivelevich)
$G_{n, p}$ contains $\left\lfloor\frac{\delta}{2}\right\rfloor$ disjoint H-cycles whp, where $\delta=$ min. degree.

- (Frieze, Krivelevich '05.) True for $p \gg n^{-1 / 8}$.
- (Frieze, Krivelevich '08.) True for $p \leq \frac{(1+o(1)) \log n}{n}$.


## Conjecture (Frieze, Krivelevich)

$G_{n, p}$ contains $\left\lfloor\frac{\delta}{2}\right\rfloor$ disjoint H-cycles whp, where $\delta=$ min. degree.

- (Frieze, Krivelevich '05.) True for $p \gg n^{-1 / 8}$.
- (Frieze, Krivelevich '08.) True for $p \leq \frac{(1+o(1)) \log n}{n}$.
- (Knox, Kühn, Osthus '10.) True for $p \gg \frac{\log n}{n}$.


## Conjecture (Frieze, Krivelevich)

$G_{n, p}$ contains $\left\lfloor\frac{\delta}{2}\right\rfloor$ disjoint H-cycles whp, where $\delta=$ min. degree.

- (Frieze, Krivelevich '05.) True for $p \gg n^{-1 / 8}$.
- (Frieze, Krivelevich '08.) True for $p \leq \frac{(1+o(1)) \log n}{n}$.
- (Knox, Kühn, Osthus '10.) True for $p \gg \frac{\log n}{n}$.


## PósA ROTATION

Longest path

## Conjecture (Frieze, Krivelevich)

$G_{n, p}$ contains $\left\lfloor\frac{\delta}{2}\right\rfloor$ disjoint H-cycles whp, where $\delta=$ min. degree.

- (Frieze, Krivelevich '05.) True for $p \gg n^{-1 / 8}$.
- (Frieze, Krivelevich '08.) True for $p \leq \frac{(1+o(1)) \log n}{n}$.
- (Knox, Kühn, Osthus '10.) True for $p \gg \frac{\log n}{n}$.


## PÓSA ROTATION



## Conjecture (Frieze, Krivelevich)

$G_{n, p}$ contains $\left\lfloor\frac{\delta}{2}\right\rfloor$ disjoint H-cycles whp, where $\delta=$ min. degree.

- (Frieze, Krivelevich '05.) True for $p \gg n^{-1 / 8}$.
- (Frieze, Krivelevich '08.) True for $p \leq \frac{(1+o(1)) \log n}{n}$.
- (Knox, Kühn, Osthus '10.) True for $p \gg \frac{\log n}{n}$.


## PÓSA ROTATION



## Conjecture (Frieze, Krivelevich)

$G_{n, p}$ contains $\left\lfloor\frac{\delta}{2}\right\rfloor$ disjoint H-cycles whp, where $\delta=$ min. degree.

- (Frieze, Krivelevich '05.) True for $p \gg n^{-1 / 8}$.
- (Frieze, Krivelevich '08.) True for $p \leq \frac{(1+o(1)) \log n}{n}$.
- (Knox, Kühn, Osthus '10.) True for $p \gg \frac{\log n}{n}$.


## PÓSA ROTATION



## Conjecture (Frieze, Krivelevich)

$G_{n, p}$ contains $\left\lfloor\frac{\delta}{2}\right\rfloor$ disjoint H-cycles whp, where $\delta=$ min. degree.

- (Frieze, Krivelevich '05.) True for $p \gg n^{-1 / 8}$.
- (Frieze, Krivelevich '08.) True for $p \leq \frac{(1+o(1)) \log n}{n}$.
- (Knox, Kühn, Osthus '10.) True for $p \gg \frac{\log n}{n}$.


## PÓSA ROTATION



DEFINITION (3-UNIFORM HYPERGRAPH)
$H_{n, p ; 3}$ : each triple appears independently with probability $p$.


DEFINITION (3-UNIFORM HYPERGRAPH)
$H_{n, p ; 3}$ : each triple appears independently with probability $p$.


DEFINITION (3-UNIFORM HYPERGRAPH)
$H_{n, p ; 3}$ : each triple appears independently with probability $p$.


DEFINITION (3-UNIFORM HYPERGRAPH)
$H_{n, p ; 3}$ : each triple appears independently with probability $p$.


DEFINITION (3-UNIFORM HYPERGRAPH)
$H_{n, p ; 3}$ : each triple appears independently with probability $p$.


## DEFINITION (3-UNIFORM HYPERGRAPH)

$H_{n, p ; 3}$ : each triple appears independently with probability $p$.


Tight H-cycle
Loose H-cycle

## DEFINITION (3-UNIFORM HYPERGRAPH)

$H_{n, p ; 3}$ : each triple appears independently with probability $p$.


Tight H-cycle


Loose H-cycle

## DEFINITION (3-UNIFORM HYPERGRAPH)

$H_{n, p ; 3}$ : each triple appears independently with probability $p$.


Tight H-cycle


Loose H-cycle

## DEFINITION (3-UNIFORM HYPERGRAPH)

$H_{n, p ; 3}$ : each triple appears independently with probability $p$.


Tight H-cycle


Loose H-cycle

## DEFINITION (3-UNIFORM HYPERGRAPH)

$H_{n, p ; 3}$ : each triple appears independently with probability $p$.


Tight H-cycle


Loose H-cycle

## DEFINITION (3-UNIFORM HYPERGRAPH)

$H_{n, p ; 3}$ : each triple appears independently with probability $p$.


Tight H-cycle


Loose H-cycle

## DEFINITION (3-UNIFORM HYPERGRAPH)

$H_{n, p ; 3}$ : each triple appears independently with probability $p$.


Tight H-cycle


Loose H-cycle

- (Frieze '10.) If $p>\frac{K \log n}{n^{2}}$ and $4 \mid n$, then $H_{n, p ; 3}$ contains a loose H-cycle whp.


## DEFINITION (3-UNIFORM HYPERGRAPH)

$H_{n, p ; 3}$ : each triple appears independently with probability $p$.


Tight H-cycle


Loose H-cycle

- (Frieze '10.) If $p>\frac{K \log n}{n^{2}}$ and $4 \mid n$, then $H_{n, p ; 3}$ contains a loose H-cycle whp.
- (Dudek, Frieze '10.) For arbitrary $r$, if $p \gg \frac{\log n}{n^{r-1}}$ and $2(r-1) \mid n$, then $H_{n, p ; r}$ contains a loose H-cycle whp.


## LIVING WITHOUT THE PÓSA LEMMA

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs to colored graphs.

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs to colored graphs.
- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs to colored graphs.

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given $k \geq 4$, if the random $2 k$-regular graph on $n$ vertices is randomly edge-colored with $n$ colors such that every color appears exactly $k$ times, then there is a rainbow H-cycle whp.
- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given $k \geq 4$, if the random $2 k$-regular graph on $n$ vertices is randomly edge-colored with $n$ colors such that every color appears exactly $k$ times, then there is a rainbow H -cycle whp.


## Theorem (Cooper, Frieze '02)

$G_{n, p}$ has a rainbow H-cycle whp if $p>\frac{K \log n}{n}$, and its edges are independently colored with $K n$ colors.

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given $k \geq 4$, if the random $2 k$-regular graph on $n$ vertices is randomly edge-colored with $n$ colors such that every color appears exactly $k$ times, then there is a rainbow H -cycle whp.

Theorem ( Frieze )
$G_{n, p}$ has a rainbow H-cycle whp if $p>\frac{\log n}{n}$, and its edges are independently colored with $n$ colors.

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given $k \geq 4$, if the random $2 k$-regular graph on $n$ vertices is randomly edge-colored with $n$ colors such that every color appears exactly $k$ times, then there is a rainbow H -cycle whp.

Theorem ( Frieze )
$G_{n, p}$ has a rainbow H -cycle whp if $p>\frac{\log n}{n}$, and its edges are independently colored with $n$ colors.

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given $k \geq 4$, if the random $2 k$-regular graph on $n$ vertices is randomly edge-colored with $n$ colors such that every color appears exactly $k$ times, then there is a rainbow H -cycle whp.

Theorem ( Frieze )
$G_{n, p}$ has a rainbow H-cycle whp if $p>\frac{\log n}{n}$, and its edges are independently colored with $n$ colors.

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given $k \geq 4$, if the random $2 k$-regular graph on $n$ vertices is randomly edge-colored with $n$ colors such that every color appears exactly $k$ times, then there is a rainbow H -cycle whp.

Theorem ( Frieze $)$
$G_{n, p}$ has a rainbow H-cycle whp if $p>\frac{\log n}{n}$, and its edges are independently colored with $n$ colors.

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given $k \geq 4$, if the random $2 k$-regular graph on $n$ vertices is randomly edge-colored with $n$ colors such that every color appears exactly $k$ times, then there is a rainbow H -cycle whp.

Theorem ( Frieze ) and its edges are independently colored with $n$ colors.

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given $k \geq 4$, if the random $2 k$-regular graph on $n$ vertices is randomly edge-colored with $n$ colors such that every color appears exactly $k$ times, then there is a rainbow H -cycle whp.

Theorem ( Frieze
$G_{n, p}$ has a rainbow H-cycle whp if $p>\frac{\log n}{n}$, and its edges are independently colored with $n$ colors.

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given $k \geq 4$, if the random $2 k$-regular graph on $n$ vertices is randomly edge-colored with $n$ colors such that every color appears exactly $k$ times, then there is a rainbow H -cycle whp.


## Theorem ( Frieze

$G_{n, p}$ has a rainbow H-cycle whp if $p>\frac{\log n}{n}$, and its edges are independently colored with $n$ colors.

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given $k \geq 4$, if the random $2 k$-regular graph on $n$ vertices is randomly edge-colored with $n$ colors such that every color appears exactly $k$ times, then there is a rainbow H -cycle whp.


## Theorem (Frieze

$G_{n, p}$ has a rainbow H-cycle whp if $p>\ldots \quad \log n$, and its edges are independently colored with $n$ colors.

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given $k \geq 4$, if the random $2 k$-regular graph on $n$ vertices is randomly edge-colored with $n$ colors such that every color appears exactly $k$ times, then there is a rainbow H -cycle whp.


## Theorem (Frieze, L. '10)

$G_{n, p}$ has a rainbow H -cycle whp if $p>\frac{(1+o(1)) \log n}{n}$, and its edges are independently colored with $(1+o(1)) n$ colors.

## Theorem (Frieze, Krivelevich '10)

If $p \gg \frac{\log ^{2} n}{n}$, then almost all edges of $H_{n, p ; r}$ can be packed with loose H-cycles whp.

## Theorem (Frieze, Krivelevich '10)

If $p \gg \frac{\log ^{2} n}{n}$, then almost all edges of $H_{n, p ; r}$ can be packed with loose H-cycles whp.

## Theorem (Frieze, Krivelevich, L. '10)

- If $p \gg n^{-1 / 16}$ and $4 \mid n$, then almost all edges of $H_{n, p ; 3}$ can be packed with tight H -cycles whp.


## Theorem (Frieze, Krivelevich '10)

If $p \gg \frac{\log ^{2} n}{n}$, then almost all edges of $H_{n, p ; r}$ can be packed with loose H-cycles whp.

## Theorem (Frieze, Krivelevich, L. '10)

- If $p \gg n^{-1 / 16}$ and $4 \mid n$, then almost all edges of $H_{n, p ; 3}$ can be packed with tight H-cycles whp.
- Pseudorandom 3-uniform hypergraphs with $4 \mid n$ can be almost packed with tight H -cycles.


## Packing H-cycles in hypergraphs

## Theorem (Fribze, Krivelevich '10)

If $p \gg \frac{\log ^{2} n}{n}$, then almost all edges of $H_{n, p ; r}$ can be packed with loose H-cycles whp.

## Theorem (Frieze, Krivelevich, L. '10)

- If $p \gg n^{-1 / 16}$ and $4 \mid n$, then almost all edges of $H_{n, p ; 3}$ can be packed with tight H-cycles whp.
- Pseudorandom 3-uniform hypergraphs with $4 \mid n$ can be almost packed with tight H -cycles.
- Pseudorandom directed graphs with $2 \mid n$ can be almost packed with H-cycles.


## Theorem (Chung, Graham, Wilson '89)

For fixed $p$, equivalent properties:

- Every set $U$ spans $\frac{p}{2}|U|^{2}+o\left(n^{2}\right)$ edges.


## Theorem (Chung, Graham, Wilson '89)

For fixed $p$, equivalent properties:

- Every set $U$ spans $\frac{p}{2}|U|^{2}+o\left(n^{2}\right)$ edges.
- $\frac{n^{2} p}{2}$ total edges, and $\# C_{4} \leq(1+o(1)) n^{4} p^{4}$.


## Pseudorandomness

## Theorem (Chung, Graham, Wilson '89)

For fixed $p$, equivalent properties:

- Every set $U$ spans $\frac{p}{2}|U|^{2}+o\left(n^{2}\right)$ edges.
- $\frac{n^{2} p}{2}$ total edges, and $\# C_{4} \leq(1+o(1)) n^{4} p^{4}$.


## DEFINITION

A digraph is $(\epsilon, p)$-uniform if:

- All in- and out-degrees are $(1 \pm \epsilon) n p$.
- Every pair $a, b$ has $(1 \pm \epsilon) n p^{2}$ common out-neighbors,



## Pseudorandomness

## Theorem (Chung, Graham, Wilson '89)

For fixed $p$, equivalent properties:

- Every set $U$ spans $\frac{p}{2}|U|^{2}+o\left(n^{2}\right)$ edges.
- $\frac{n^{2} p}{2}$ total edges, and $\# C_{4} \leq(1+o(1)) n^{4} p^{4}$.


## DEFINITION

A digraph is $(\epsilon, p)$-uniform if:

- All in- and out-degrees are $(1 \pm \epsilon) n p$.
- Every pair $a, b$ has $(1 \pm \epsilon) n p^{2}$ common out-neighbors, etc.



## PsEUDORANDOMNESS

## DEFINITION

A digraph is $(\epsilon, p)$-uniform if:

- All in- and out-degrees are $(1 \pm \epsilon) n p$.
- Every pair $a, b$ has $(1 \pm \epsilon) n p^{2}$ common out-neighbors, etc.



## PsEUDORANDOMNESS

## DEFINITION

A digraph is $(\epsilon, p)$-uniform if:

- All in- and out-degrees are $(1 \pm \epsilon) n p$.
- Every pair $a, b$ has $(1 \pm \epsilon) n p^{2}$ common out-neighbors, etc.



## PsEUDORANDOMNESS

## DEFINITION

A digraph is $(\epsilon, p)$-uniform if:

- All in- and out-degrees are $(1 \pm \epsilon) n p$.
- Every pair $a, b$ has $(1 \pm \epsilon) n p^{2}$ common out-neighbors, etc.



## PsEUDORANDOMNESS

## DEFINITION

A digraph is $(\epsilon, p)$-uniform if:

- All in- and out-degrees are $(1 \pm \epsilon) n p$.
- Every pair $a, b$ has $(1 \pm \epsilon) n p^{2}$ common out-neighbors, etc.



## PsEUDORANDOMNESS

## DEFINITION

A digraph is $(\epsilon, p)$-uniform if:

- All in- and out-degrees are $(1 \pm \epsilon) n p$.
- Every pair $a, b$ has $(1 \pm \epsilon) n p^{2}$ common out-neighbors, etc.



## PsEUDORANDOMNESS

## DEFINITION

A digraph is $(\epsilon, p)$-uniform if:

- All in- and out-degrees are $(1 \pm \epsilon) n p$.
- Every pair $a, b$ has $(1 \pm \epsilon) n p^{2}$ common out-neighbors, etc.



## DEFINITION

A digraph is $(\epsilon, p)$-uniform if:

- All in- and out-degrees are $(1 \pm \epsilon) n p$.
- Every pair $a, b$ has $(1 \pm \epsilon) n p^{2}$ common out-neighbors, etc.



## DEFINITION

A digraph is $(\epsilon, p)$-uniform if:

- All in- and out-degrees are $(1 \pm \epsilon) n p$.
- Every pair $a, b$ has $(1 \pm \epsilon) n p^{2}$ common out-neighbors, etc.



## DEFINITION

A digraph is $(\epsilon, p)$-uniform if:

- All in- and out-degrees are $(1 \pm \epsilon) n p$.
- Every pair $a, b$ has $(1 \pm \epsilon) n p^{2}$ common out-neighbors, etc.



## DEFINITION

A digraph is $(\epsilon, p)$-uniform if:

- All in- and out-degrees are $(1 \pm \epsilon) n p$.
- Every pair $a, b$ has $(1 \pm \epsilon) n p^{2}$ common out-neighbors, etc.

- Every $a, b, c, d$ have $(1 \pm \epsilon) n p^{4}$ vertices $v$ of the form:



## REDUCTION: DIGRAPHS TO BIPARTITE GRAPHS

Link H -cycles in digraphs to perfect matchings in bipartite graphs:

- Randomly split and permute the digraph vertices.



## REDUCTION: DIGRAPHS TO BIPARTITE GRAPHS

Link H -cycles in digraphs to perfect matchings in bipartite graphs:

- Randomly split and permute the digraph vertices.


Directed graph
(bisected vertex set)

## REDUCTION: DIGRAPHS TO BIPARTITE GRAPHS

Link H -cycles in digraphs to perfect matchings in bipartite graphs:

- Randomly split and permute the digraph vertices.


Directed graph
(bisected vertex set)


Auxiliary bipartite graph

Link H-cycles in digraphs to perfect matchings in bipartite graphs:

- Randomly split and permute the digraph vertices.


Directed graph
(bisected vertex set)


- Show the auxiliary graph is also pseudorandom whp (all degrees and co-degrees are correct).
- Pack perfect matchings in the auxiliary graph; recover as Hamilton cycles in the digraph.


## REDUCTION: HYPERGRAPHS TO DIGRAPHS

Link tight H-cycles in 3-graphs to H -cycles in digraphs:

- Randomly permute vtxs, and make consecutive ordered pairs.


Hypergraph

## REDUCTION: HYPERGRAPHS TO DIGRAPHS

Link tight H-cycles in 3-graphs to H -cycles in digraphs:

- Randomly permute vtxs, and make consecutive ordered pairs.


Hypergraph

Link tight H-cycles in 3-graphs to H -cycles in digraphs:

- Randomly permute vtxs, and make consecutive ordered pairs.


Hypergraph


Auxiliary digraph

- Place $\overrightarrow{x_{1,2} x_{7,8}}$ if both $\left\{x_{1}, x_{2}, x_{7}\right\},\left\{x_{2}, x_{7}, x_{8}\right\}$ are hyperedges.

Link tight H-cycles in 3-graphs to H-cycles in digraphs:

- Randomly permute vtxs, and make consecutive ordered pairs.


Hypergraph


Auxiliary digraph

- Place $\overrightarrow{x_{1,2} x_{7,8}}$ if both $\left\{x_{1}, x_{2}, x_{7}\right\},\left\{x_{2}, x_{7}, x_{8}\right\}$ are hyperedges.
- Show auxiliary digraph is also pseudorandom.
- Pack Hamilton cycles in the digraph; recover as tight Hamilton cycles in the 3-uniform hypergraph.


## Conclusion

- Life is more difficult without the Pósa lemma.
- Life is more difficult without the Pósa lemma.
- Obtained first packing result for tight Hamilton cycles.
- Independently established asymptotically optimal result for rainbow Hamilton cycles in random graphs.
- Life is more difficult without the Pósa lemma.
- Obtained first packing result for tight Hamilton cycles.
- Independently established asymptotically optimal result for rainbow Hamilton cycles in random graphs.


## Questions

- Is the $(a, b, c, d)$ condition necessary for pseudorandom digraph packing?

- Remove divisibility conditions from results.
- Generalize to higher uniformity.

