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General graphs

Definition

A cycle is Hamiltonian if it visits every vertex exactly once.

(Dirac ’52.) Degrees ≥ n
2 ⇒ Hamilton cycle.

(Nash-Williams ’71.) Same⇒ 5
224n disjoint H-cycles.

(Christofides, Kühn, Osthus ’10.) If degrees ≥ (1
2 + o(1))n,

then there are n
8 disjoint H-cycles.

(Christofides, Kühn, Osthus ’10.) d-regular graphs with
d ≥ (1

2 + o(1))n can be (1− o(1))-packed with H-cycles.

Remark

Cannot hope to pack regular graphs with H-cycles if d < n
2 .
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(Christofides, Kühn, Osthus ’10.) d-regular graphs with
d ≥ (1

2 + o(1))n can be (1− o(1))-packed with H-cycles.

Remark

Cannot hope to pack regular graphs with H-cycles if d < n
2 .



General graphs

Definition

A cycle is Hamiltonian if it visits every vertex exactly once.

(Dirac ’52.) Degrees ≥ n
2 ⇒ Hamilton cycle.

(Nash-Williams ’71.) Same⇒ 5
224n disjoint H-cycles.
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Random graphs

Definition

Erdős-Rényi Gn,p: edges appear independently with probability p.

(Komlós, Szemerédi ’83; Kor̆sunov ’77.) Gn,p is Hamiltonian

whp if p = log n+log log n+ω(n)
n with ω(n)→∞.

Definition (Random graph process)

Starting with n isolated vertices, add one random edge per round.

(Bollobás ’84.) In the random graph process, whp an H-cycle
appears as soon as all degrees are at least 2.

(Bollobás, Frieze ’85.) For any fixed k , whp k disjoint
H-cycles appear as soon as all degrees are at least 2k .

(Kim, Wormald ’01.) For fixed r , random r -regular graphs
contain

⌊
r
2

⌋
disjoint H-cycles whp.
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Random graphs

Conjecture (Frieze, Krivelevich)

Gn,p contains
⌊
δ
2

⌋
disjoint H-cycles whp, where δ = min. degree.

(Frieze, Krivelevich ’05.) True for p � n−1/8.

(Frieze, Krivelevich ’08.) True for p ≤ (1+o(1)) log n
n .

(Knox, Kühn, Osthus ’10.) True for p � log n
n .

Pósa rotation

Longest path



Random graphs

Conjecture (Frieze, Krivelevich)

Gn,p contains
⌊
δ
2

⌋
disjoint H-cycles whp, where δ = min. degree.

(Frieze, Krivelevich ’05.) True for p � n−1/8.

(Frieze, Krivelevich ’08.) True for p ≤ (1+o(1)) log n
n .
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Hypergraphs

Definition (3-uniform hypergraph)

Hn,p;3: each triple appears independently with probability p.

Tight H-cycle Loose H-cycle

(Frieze ’10.) If p > K log n
n2 and 4 | n, then Hn,p;3 contains a

loose H-cycle whp.

(Dudek, Frieze ’10.) For arbitrary r , if p � log n
nr−1 and

2(r − 1) | n, then Hn,p;r contains a loose H-cycle whp.
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Living without the Pósa lemma

Frieze applied Johansson, Kahn, Vu to find perfect matchings.

Connect 3-uniform hypergraphs

(loose Hamiltonicity)

to colored graphs

(rainbow Hamilton cycles).

(Janson, Wormald ’07.) Given k ≥ 4, if the random
2k-regular graph on n vertices is randomly edge-colored with
n colors such that every color appears exactly k times, then
there is a rainbow H-cycle whp.

Theorem (Frieze, L. ’10)

Gn,p has a rainbow H-cycle whp if p > (1+o(1)) log n
n ,

)
n

and its edges are independently colored with (1 + o(1))n colors.

)
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Hypergraph
(bisected vertex set)

Auxiliary graph

Frieze applied Johansson, Kahn, Vu to find perfect matchings.

Connect 3-uniform hypergraphs (loose Hamiltonicity)
to colored graphs (rainbow Hamilton cycles).

(Janson, Wormald ’07.) Given k ≥ 4, if the random
2k-regular graph on n vertices is randomly edge-colored with
n colors such that every color appears exactly k times, then
there is a rainbow H-cycle whp.

Theorem (Frieze, L. ’10)

Gn,p has a rainbow H-cycle whp if p > (1+o(1)) log n
n ,

)
n

and its edges are independently colored with (1 + o(1))n colors.

)



Living without the Pósa lemma
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Packing H-cycles in hypergraphs

Theorem (Frieze, Krivelevich ’10)

If p � log2 n
n , then almost all edges of Hn,p;r can be packed with

loose H-cycles whp.

Theorem (Frieze, Krivelevich, L. ’10)

If p � n−1/16 and 4 | n, then almost all edges of Hn,p;3 can be
packed with tight H-cycles whp.

Pseudorandom 3-uniform hypergraphs with 4 | n can be
almost packed with tight H-cycles.

Pseudorandom directed graphs with 2 | n can be almost
packed with H-cycles.
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Pseudorandomness

Theorem (Chung, Graham, Wilson ’89)

For fixed p, equivalent properties:

Every set U spans p
2 |U|

2 + o(n2) edges.

n2p
2 total edges, and #C4 ≤ (1 + o(1))n4p4.

Definition

A digraph is (ε, p)-uniform if:

All in- and out-degrees are (1± ε)np.

Every pair a, b has (1± ε)np2 common out-neighbors,
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Reduction: digraphs to bipartite graphs

Link H-cycles in digraphs to perfect matchings in bipartite graphs:

Randomly split and permute the digraph vertices.

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

Directed graph
(bisected vertex set)

Show the auxiliary graph is also pseudorandom whp
(all degrees and co-degrees are correct).

Pack perfect matchings in the auxiliary graph; recover as
Hamilton cycles in the digraph.
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Reduction: hypergraphs to digraphs

Link tight H-cycles in 3-graphs to H-cycles in digraphs:

Randomly permute vtxs, and make consecutive ordered pairs.

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

Hypergraph

Place −−−−→x1,2x7,8 if both {x1, x2, x7}, {x2, x7, x8} are hyperedges.

Show auxiliary digraph is also pseudorandom.

Pack Hamilton cycles in the digraph; recover as tight
Hamilton cycles in the 3-uniform hypergraph.
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Conclusion

Life is more difficult without the Pósa lemma.

Obtained first packing result for tight Hamilton cycles.

Independently established asymptotically optimal result for
rainbow Hamilton cycles in random graphs.

Questions

Is the (a, b, c , d) condition necessary for pseudorandom
digraph packing?

a

b

c

d

v

Remove divisibility conditions from results.

Generalize to higher uniformity.
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