PACKING TIGHT HAMILTON CYCLES

Po-Shen Loh Carnegie Mellon University

Joint work with Alan Frieze and Michael Krivelevich

A cycle is Hamiltonian if it visits every vertex exactly once.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

• (Dirac '52.) Degrees $\geq \frac{n}{2} \Rightarrow$ Hamilton cycle.

A cycle is *Hamiltonian* if it visits every vertex exactly once.

- (Dirac '52.) Degrees $\geq \frac{n}{2} \Rightarrow$ Hamilton cycle.
- (Nash-Williams '71.) Same $\Rightarrow \frac{5}{224}n$ disjoint H-cycles.

A cycle is *Hamiltonian* if it visits every vertex exactly once.

- (Dirac '52.) Degrees $\geq \frac{n}{2} \Rightarrow$ Hamilton cycle.
- (Nash-Williams '71.) Same $\Rightarrow \frac{5}{224}n$ disjoint H-cycles.
- (Christofides, Kühn, Osthus '10.) If degrees $\geq (\frac{1}{2} + o(1))n$, then there are $\frac{n}{8}$ disjoint H-cycles.
- (Christofides, Kühn, Osthus '10.) *d*-regular graphs with $d \ge (\frac{1}{2} + o(1))n$ can be (1 o(1))-packed with H-cycles.

A cycle is *Hamiltonian* if it visits every vertex exactly once.

- (Dirac '52.) Degrees $\geq \frac{n}{2} \Rightarrow$ Hamilton cycle.
- (Nash-Williams '71.) Same $\Rightarrow \frac{5}{224}n$ disjoint H-cycles.
- (Christofides, Kühn, Osthus '10.) If degrees ≥ (¹/₂ + o(1))n, then there are ⁿ/₈ disjoint H-cycles.
- (Christofides, Kühn, Osthus '10.) *d*-regular graphs with $d \ge (\frac{1}{2} + o(1))n$ can be (1 o(1))-packed with H-cycles.

Remark

Cannot hope to pack regular graphs with H-cycles if $d < \frac{n}{2}$.

RANDOM GRAPHS

DEFINITION

Erdős-Rényi $G_{n,p}$: edges appear independently with probability p.

• (Komlós, Szemerédi '83; Koršunov '77.) $G_{n,p}$ is Hamiltonian whp if $p = \frac{\log n + \log \log n + \omega(n)}{n}$ with $\omega(n) \to \infty$.

・ロト・日本・モート・モー うらくで

RANDOM GRAPHS

DEFINITION

Erdős-Rényi $G_{n,p}$: edges appear independently with probability p.

• (Komlós, Szemerédi '83; Koršunov '77.) $G_{n,p}$ is Hamiltonian whp if $p = \frac{\log n + \log \log n + \omega(n)}{n}$ with $\omega(n) \to \infty$.

DEFINITION (RANDOM GRAPH PROCESS)

Starting with *n* isolated vertices, add one random edge per round.

• (Bollobás '84.) In the random graph process, **whp** an H-cycle appears as soon as all degrees are at least 2.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

RANDOM GRAPHS

DEFINITION

Erdős-Rényi $G_{n,p}$: edges appear independently with probability p.

• (Komlós, Szemerédi '83; Koršunov '77.) $G_{n,p}$ is Hamiltonian whp if $p = \frac{\log n + \log \log n + \omega(n)}{n}$ with $\omega(n) \to \infty$.

DEFINITION (RANDOM GRAPH PROCESS)

Starting with n isolated vertices, add one random edge per round.

- (Bollobás '84.) In the random graph process, **whp** an H-cycle appears as soon as all degrees are at least 2.
- (Bollobás, Frieze '85.) For any fixed k, whp k disjoint H-cycles appear as soon as all degrees are at least 2k.
- (Kim, Wormald '01.) For fixed r, random r-regular graphs contain \[\frac{r}{2}\] disjoint H-cycles whp.

 $G_{n,p}$ contains $\left|\frac{\delta}{2}\right|$ disjoint H-cycles **whp**, where $\delta = \min$. degree.

・ロト・日本・モート・モー うらくで

 $G_{n,p}$ contains $\left|\frac{\delta}{2}\right|$ disjoint H-cycles **whp**, where $\delta = \min$. degree.

- (Frieze, Krivelevich '05.) True for $p \gg n^{-1/8}$.
- (Frieze, Krivelevich '08.) True for $p \leq \frac{(1+o(1))\log n}{n}$.

 $G_{n,p}$ contains $\left|\frac{\delta}{2}\right|$ disjoint H-cycles **whp**, where $\delta = \min$. degree.

- (Frieze, Krivelevich '05.) True for $p \gg n^{-1/8}$.
- (Frieze, Krivelevich '08.) True for $p \leq \frac{(1+o(1))\log n}{n}$.
- (Knox, Kühn, Osthus '10.) True for $p \gg \frac{\log n}{n}$.

 $G_{n,p}$ contains $\left|\frac{\delta}{2}\right|$ disjoint H-cycles **whp**, where $\delta = \min$. degree.

- (Frieze, Krivelevich '05.) True for $p \gg n^{-1/8}$.
- (Frieze, Krivelevich '08.) True for $p \leq \frac{(1+o(1))\log n}{n}$.
- (Knox, Kühn, Osthus '10.) True for $p \gg \frac{\log n}{n}$.

 $G_{n,p}$ contains $\left|\frac{\delta}{2}\right|$ disjoint H-cycles **whp**, where $\delta = \min$. degree.

- (Frieze, Krivelevich '05.) True for $p \gg n^{-1/8}$.
- (Frieze, Krivelevich '08.) True for $p \leq \frac{(1+o(1))\log n}{n}$.
- (Knox, Kühn, Osthus '10.) True for $p \gg \frac{\log n}{n}$.

 $G_{n,p}$ contains $\left|\frac{\delta}{2}\right|$ disjoint H-cycles **whp**, where $\delta = \min$. degree.

- (Frieze, Krivelevich '05.) True for $p \gg n^{-1/8}$.
- (Frieze, Krivelevich '08.) True for $p \leq \frac{(1+o(1))\log n}{n}$.
- (Knox, Kühn, Osthus '10.) True for $p \gg \frac{\log n}{n}$.

 $G_{n,p}$ contains $\left|\frac{\delta}{2}\right|$ disjoint H-cycles **whp**, where $\delta = \min$. degree.

- (Frieze, Krivelevich '05.) True for $p \gg n^{-1/8}$.
- (Frieze, Krivelevich '08.) True for $p \leq \frac{(1+o(1))\log n}{n}$.
- (Knox, Kühn, Osthus '10.) True for $p \gg \frac{\log n}{n}$.

 $G_{n,p}$ contains $\left|\frac{\delta}{2}\right|$ disjoint H-cycles **whp**, where $\delta = \min$. degree.

- (Frieze, Krivelevich '05.) True for $p \gg n^{-1/8}$.
- (Frieze, Krivelevich '08.) True for $p \leq \frac{(1+o(1))\log n}{n}$.
- (Knox, Kühn, Osthus '10.) True for $p \gg \frac{\log n}{n}$.

 $H_{n,p;3}$: each triple appears independently with probability p.

 $H_{n,p;3}$: each triple appears independently with probability p.

 $H_{n,p;3}$: each triple appears independently with probability p.

 $H_{n,p;3}$: each triple appears independently with probability p.

 $H_{n,p;3}$: each triple appears independently with probability p.

 $H_{n,p;3}$: each triple appears independently with probability p.

Loose H-cycle

 $H_{n,p;3}$: each triple appears independently with probability p.

Loose H-cycle

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ⊙

 $H_{n,p;3}$: each triple appears independently with probability p.

 $H_{n,p;3}$: each triple appears independently with probability p.

 $H_{n,p;3}$: each triple appears independently with probability p.

 $H_{n,p;3}$: each triple appears independently with probability p.

 $H_{n,p;3}$: each triple appears independently with probability p.

• (Frieze '10.) If $p > \frac{K \log n}{n^2}$ and $4 \mid n$, then $H_{n,p;3}$ contains a loose H-cycle **whp**.

 $H_{n,p;3}$: each triple appears independently with probability p.

- (Frieze '10.) If $p > \frac{K \log n}{n^2}$ and $4 \mid n$, then $H_{n,p;3}$ contains a loose H-cycle **whp**.
- (Dudek, Frieze '10.) For arbitrary r, if $p \gg \frac{\log n}{n^{r-1}}$ and $2(r-1) \mid n$, then $H_{n,p;r}$ contains a loose H-cycle **whp**.

Living without the Pósa lemma

• Frieze applied Johansson, Kahn, Vu to find perfect matchings.

• Frieze applied Johansson, Kahn, Vu to find perfect matchings.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

• Connect 3-uniform hypergraphs to colored graphs.

Hypergraph (bisected vertex set)

• Frieze applied Johansson, Kahn, Vu to find perfect matchings.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

• Connect 3-uniform hypergraphs to colored graphs.

Hypergraph (bisected vertex set)

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs to colored graphs.

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given k ≥ 4, if the random 2k-regular graph on n vertices is randomly edge-colored with n colors such that every color appears exactly k times, then there is a rainbow H-cycle whp.

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given k ≥ 4, if the random 2k-regular graph on n vertices is randomly edge-colored with n colors such that every color appears exactly k times, then there is a rainbow H-cycle whp.

THEOREM (COOPER, FRIEZE '02)

 $G_{n,p}$ has a rainbow H-cycle **whp** if $p > \frac{K \log n}{n}$, and its edges are independently colored with Kn colors.
- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given k ≥ 4, if the random 2k-regular graph on n vertices is randomly edge-colored with n colors such that every color appears exactly k times, then there is a rainbow H-cycle whp.

THEOREM (Frieze)			
$G_{n,p}$ has a rainbow H-cycle whp if $p > \frac{\log n}{n}$, and its edges are independently colored with n colors.					

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given k ≥ 4, if the random 2k-regular graph on n vertices is randomly edge-colored with n colors such that every color appears exactly k times, then there is a rainbow H-cycle whp.

THEOREM (Frieze)			
$G_{n,p}$ has a rainbow H-cycle whp if $p > \frac{\log n}{n}$, and its edges are independently colored with n colors.					

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given k ≥ 4, if the random 2k-regular graph on n vertices is randomly edge-colored with n colors such that every color appears exactly k times, then there is a rainbow H-cycle whp.

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given k ≥ 4, if the random 2k-regular graph on n vertices is randomly edge-colored with n colors such that every color appears exactly k times, then there is a rainbow H-cycle whp.

THEOREM (FRIEZE $G_{n,p}$ has a rainbow H-cycle whp if $p > \frac{\log n}{n}$,
and its edges are independently colored with n colors.

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given k ≥ 4, if the random 2k-regular graph on n vertices is randomly edge-colored with n colors such that every color appears exactly k times, then there is a rainbow H-cycle whp.

THEOREM (FRIEZE

 $G_{n,p}$ has a rainbow H-cycle **whp** if $p > \frac{\log n}{n}$, and its edges are independently colored with n colors.

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given k ≥ 4, if the random 2k-regular graph on n vertices is randomly edge-colored with n colors such that every color appears exactly k times, then there is a rainbow H-cycle whp.

THEOREM (FRIEZE

 $G_{n,p}$ has a rainbow H-cycle **whp** if $p > \frac{\log n}{n}$, and its edges are independently colored with n colors.

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given k ≥ 4, if the random 2k-regular graph on n vertices is randomly edge-colored with n colors such that every color appears exactly k times, then there is a rainbow H-cycle whp.

THEOREM (FRIEZE

 $G_{n,p}$ has a rainbow H-cycle **whp** if $p > \frac{\log n}{n}$, and its edges are independently colored with n colors.

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given k ≥ 4, if the random 2k-regular graph on n vertices is randomly edge-colored with n colors such that every color appears exactly k times, then there is a rainbow H-cycle whp.

THEOREM (FRIEZE

 $G_{n,p}$ has a rainbow H-cycle **whp** if $p > \frac{\log n}{n}$, and its edges are independently colored with n colors.

- Frieze applied Johansson, Kahn, Vu to find perfect matchings.
- Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).
- (Janson, Wormald '07.) Given k ≥ 4, if the random 2k-regular graph on n vertices is randomly edge-colored with n colors such that every color appears exactly k times, then there is a rainbow H-cycle whp.

THEOREM (FRIEZE, L. '10)

 $G_{n,p}$ has a rainbow H-cycle **whp** if $p > \frac{(1+o(1))\log n}{n}$, and its edges are independently colored with (1+o(1))n colors.

THEOREM (FRIEZE, KRIVELEVICH '10)

If $p \gg \frac{\log^2 n}{n}$, then almost all edges of $H_{n,p;r}$ can be packed with loose H-cycles **whp**.

PACKING H-CYCLES IN HYPERGRAPHS

THEOREM (FRIEZE, KRIVELEVICH '10)

If $p \gg \frac{\log^2 n}{n}$, then almost all edges of $H_{n,p;r}$ can be packed with loose H-cycles **whp**.

THEOREM (FRIEZE, KRIVELEVICH, L. '10)

If p ≫ n^{-1/16} and 4 | n, then almost all edges of H_{n,p;3} can be packed with *tight* H-cycles whp.

PACKING H-CYCLES IN HYPERGRAPHS

THEOREM (FRIEZE, KRIVELEVICH '10)

If $p \gg \frac{\log^2 n}{n}$, then almost all edges of $H_{n,p;r}$ can be packed with loose H-cycles **whp**.

THEOREM (FRIEZE, KRIVELEVICH, L. '10)

If p ≫ n^{-1/16} and 4 | n, then almost all edges of H_{n,p;3} can be packed with *tight* H-cycles whp.

• *Pseudorandom* 3-uniform hypergraphs with 4 | *n* can be almost packed with *tight* H-cycles.

PACKING H-CYCLES IN HYPERGRAPHS

THEOREM (FRIEZE, KRIVELEVICH '10)

If $p \gg \frac{\log^2 n}{n}$, then almost all edges of $H_{n,p;r}$ can be packed with loose H-cycles **whp**.

THEOREM (FRIEZE, KRIVELEVICH, L. '10)

If p ≫ n^{-1/16} and 4 | n, then almost all edges of H_{n,p;3} can be packed with *tight* H-cycles whp.

- *Pseudorandom* 3-uniform hypergraphs with 4 | *n* can be almost packed with *tight* H-cycles.
- *Pseudorandom* directed graphs with 2 | *n* can be almost packed with H-cycles.

For fixed *p*, equivalent properties:

• Every set U spans $\frac{p}{2}|U|^2 + o(n^2)$ edges.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

For fixed p, equivalent properties:

- Every set U spans $\frac{p}{2}|U|^2 + o(n^2)$ edges.
- $\frac{n^2 p}{2}$ total edges, and $\#C_4 \leq (1+o(1))n^4p^4$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

For fixed *p*, equivalent properties:

- Every set U spans $\frac{p}{2}|U|^2 + o(n^2)$ edges.
- $\frac{n^2p}{2}$ total edges, and $\#C_4 \leq (1+o(1))n^4p^4$.

DEFINITION

A digraph is (ϵ, p) -uniform if:

- All in- and out-degrees are $(1 \pm \epsilon)np$.
- Every pair a, b has $(1 \pm \epsilon)np^2$ common out-neighbors,

For fixed p, equivalent properties:

- Every set U spans $\frac{p}{2}|U|^2 + o(n^2)$ edges.
- $\frac{n^2p}{2}$ total edges, and $\#C_4 \leq (1+o(1))n^4p^4$.

DEFINITION

A digraph is (ϵ, p) -uniform if:

- All in- and out-degrees are $(1 \pm \epsilon)np$.
- Every pair a, b has $(1 \pm \epsilon)np^2$ common out-neighbors, etc.

A digraph is (ϵ, p) -uniform if:

- All in- and out-degrees are $(1 \pm \epsilon)np$.
- Every pair a, b has $(1 \pm \epsilon)np^2$ common out-neighbors, etc.

A digraph is (ϵ, p) -uniform if:

- All in- and out-degrees are $(1 \pm \epsilon)np$.
- Every pair a, b has $(1 \pm \epsilon)np^2$ common out-neighbors, etc.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

- A digraph is (ϵ, p) -uniform if:
 - All in- and out-degrees are $(1 \pm \epsilon)np$.
 - Every pair a, b has $(1 \pm \epsilon)np^2$ common out-neighbors, etc.

A digraph is (ϵ, p) -uniform if:

- All in- and out-degrees are $(1 \pm \epsilon)np$.
- Every pair a, b has $(1 \pm \epsilon)np^2$ common out-neighbors, etc.

A digraph is (ϵ, p) -uniform if:

- All in- and out-degrees are $(1 \pm \epsilon)np$.
- Every pair a, b has $(1 \pm \epsilon)np^2$ common out-neighbors, etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

A digraph is (ϵ, p) -uniform if:

- All in- and out-degrees are $(1 \pm \epsilon)np$.
- Every pair a, b has $(1 \pm \epsilon)np^2$ common out-neighbors, etc.

A digraph is (ϵ, p) -uniform if:

- All in- and out-degrees are $(1 \pm \epsilon)np$.
- Every pair a, b has $(1 \pm \epsilon)np^2$ common out-neighbors, etc.

A digraph is (ϵ, p) -uniform if:

- All in- and out-degrees are $(1 \pm \epsilon)np$.
- Every pair a, b has $(1 \pm \epsilon)np^2$ common out-neighbors, etc.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

A digraph is (ϵ, p) -uniform if:

- All in- and out-degrees are $(1 \pm \epsilon)np$.
- Every pair a, b has $(1 \pm \epsilon)np^2$ common out-neighbors, etc.

A digraph is (ϵ, p) -uniform if:

- All in- and out-degrees are $(1 \pm \epsilon)np$.
- Every pair a, b has $(1 \pm \epsilon)np^2$ common out-neighbors, etc.

Link H-cycles in digraphs to perfect matchings in bipartite graphs:

• Randomly split and permute the digraph vertices.

Link H-cycles in digraphs to perfect matchings in bipartite graphs:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Randomly split and permute the digraph vertices.

Link H-cycles in digraphs to perfect matchings in bipartite graphs:

• Randomly split and permute the digraph vertices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Link H-cycles in digraphs to perfect matchings in bipartite graphs:

• Randomly split and permute the digraph vertices.

- Show the auxiliary graph is also pseudorandom **whp** (all degrees and co-degrees are correct).
- Pack perfect matchings in the auxiliary graph; recover as Hamilton cycles in the digraph.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Link tight H-cycles in 3-graphs to H-cycles in digraphs:

• Randomly permute vtxs, and make consecutive ordered pairs.

Link tight H-cycles in 3-graphs to H-cycles in digraphs:

• Randomly permute vtxs, and make consecutive ordered pairs.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Hypergraph

Link tight H-cycles in 3-graphs to H-cycles in digraphs:

• Randomly permute vtxs, and make consecutive ordered pairs.

Hypergraph Auxiliary digraph

• Place $\overrightarrow{x_{1,2}x_{7,8}}$ if both $\{x_1, x_2, x_7\}, \{x_2, x_7, x_8\}$ are hyperedges.

Link tight H-cycles in 3-graphs to H-cycles in digraphs:

• Randomly permute vtxs, and make consecutive ordered pairs.

Hypergraph

Auxiliary digraph

- Place $\overrightarrow{x_{1,2}x_{7,8}}$ if both $\{x_1, x_2, x_7\}, \{x_2, x_7, x_8\}$ are hyperedges.
- Show auxiliary digraph is also pseudorandom.
- Pack Hamilton cycles in the digraph; recover as tight Hamilton cycles in the 3-uniform hypergraph.

• Life is more difficult without the Pósa lemma.
CONCLUSION

- Life is more difficult without the Pósa lemma.
- Obtained first packing result for *tight* Hamilton cycles.
- Independently established asymptotically optimal result for rainbow Hamilton cycles in random graphs.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

CONCLUSION

- Life is more difficult without the Pósa lemma.
- Obtained first packing result for *tight* Hamilton cycles.
- Independently established asymptotically optimal result for rainbow Hamilton cycles in random graphs.

QUESTIONS

• Is the (*a*, *b*, *c*, *d*) condition necessary for pseudorandom digraph packing?

- Remove divisibility conditions from results.
- Generalize to higher uniformity.