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Sociology

. . . or Ramsey Theory?

Observation (S. Szalai, sociologist)

Every group of about 20 children contains a set of 4 children, any
two of which are friends, or a set of 4 children, no two of which are
friends.

. . . but after discussion with Hungarian mathematicians Erdős,
Turán, and Sós:

Ramsey number R(4, 4)

Draw 18 points, and connect some pairs of them by
lines. No matter how this is done, there will always
exist either:

a set of 4 points, with all pairs connected, or

a set of 4 points, with no pairs connected.
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Upper bounds for Ramsey numbers

Definition

Let R(r , s) be the smallest integer such that every graph with
R(r , s) vertices contains either a clique of size r or an independent
set of size s.

Erdős-Szekeres (1935)

Every graph G with
(r+s−2

r−1

)
vertices contains either a clique of size

r or an independent set of size s, i.e., R(r , s) ≤
(r+s−2

r−1

)
.

Proof. Induction on r + s. Let ur ,s =
(r+s−2

r−1

)
.

Since ur ,s = ur−1,s + ur ,s−1, any vertex v ∈ G has either:

at least ur−1,s neighbors ⇒ clique of size r − 1

at least ur ,s−1 non-nbrs.

⇒ independent set of size s − 1. �
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Erdős-Szekeres (1935)

Every graph G with
(r+s−2

r−1

)
vertices contains either a clique of size

r or an independent set of size s, i.e., R(r , s) ≤
(r+s−2

r−1

)
.

Proof. Induction on r + s. Let ur ,s =
(r+s−2

r−1

)
.

Since ur ,s = ur−1,s + ur ,s−1, any vertex v ∈ G has either:

at least ur−1,s neighbors ⇒ clique of size r − 1

at least ur ,s−1 non-nbrs. ⇒ independent set of size s − 1. �



Upper bounds for Ramsey numbers

Definition

Let R(r , s) be the smallest integer such that every graph with
R(r , s) vertices contains either a clique of size r or an independent
set of size s.
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Bounds for Ramsey numbers

Erdős-Szekeres (1935)

Every graph G with
(r+s−2

r−1

)
vertices contains either a clique of size

r or an independent set of size s, i.e., R(r , s) ≤
(r+s−2

r−1

)
.

The diagonal bound is R(r , r) ≤
(2r−2

r−1

)
≈ 22r .

To lower-bound R(r , r), one must construct a large graph
with all cliques and independent sets smaller than r .

For years, the best construction was only polynomial in r .

Erdős (1947)

There exists a graph with 2r/2 vertices, but with all cliques and
independent sets smaller than r .
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Erdős-Szekeres (1935)

Every graph G with
(r+s−2

r−1

)
vertices contains either a clique of size

r or an independent set of size s, i.e., R(r , s) ≤
(r+s−2

r−1

)
.

The diagonal bound is R(r , r) ≤
(2r−2

r−1

)
≈ 22r .

To lower-bound R(r , r), one must construct a large graph
with all cliques and independent sets smaller than r .

For years, the best construction was only polynomial in r .
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Erdős (1947)

There exists a graph with 2r/2 vertices, but with all cliques and
independent sets smaller than r .



Bounds for Ramsey numbers
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Erdős-Szekeres (1935)

Every graph G with
(r+s−2

r−1

)
vertices contains either a clique of size

r or an independent set of size s, i.e., R(r , s) ≤
(r+s−2

r−1

)
.

The diagonal bound is R(r , r) ≤
(2r−2

r−1

)
≈ 22r .

To lower-bound R(r , r), one must construct a large graph
with all cliques and independent sets smaller than r .

For years, the best construction was only polynomial in r .
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Erdős (1947)

There exists a graph with 2r/2 vertices, but with all cliques and
independent sets smaller than r .



Bounds for Ramsey numbers
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Proof of lower bound

Erdős (1947)

There exists a graph with 2r/2 vertices, but with all cliques and
independent sets smaller than r .

Proof.

Let n = 2r/2, and let V = {v1, . . . , vn} be vertices.

For each pair of vertices, place an edge with probability 1
2 .

For every set S of r vertices, let BS be the event that either
all or none of the edges within S appear.

For each of the
(n
r

)
sets S , P[BS ] = 2 · 2−(r

2). So
P[some BS occurs] is at most(

n

r

)
· 2 · 2−(r

2) ≤ nr

r !
· 2 · 2−

r2−r
2

= (2r/2)r/r ! · 21− r2−r
2

= 21+r/2/r !
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2 .

For every set S of r vertices, let BS be the event that either
all or none of the edges within S appear.

For each of the
(n
r

)
sets S , P[BS ] = 2 · 2−(r

2). So
P[some BS occurs] is at most(

n

r

)
· 2 · 2−(r

2) ≤ nr

r !
· 2 · 2−

r2−r
2

= (2r/2)r/r ! · 21− r2−r
2

= 21+r/2/r ! → 0.



Independent transversals

Definition

An independent transversal has
one vertex per group, with no
edges between the vertices.

Remark. In this example, ∆ is bounded by local geometry, but
the number of towers (vertex groups) can be arbitrarily large.
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Results

Alon (1988)

If every group has size ≥ 2e∆, then an independent transversal
always exists, no matter how many groups there are.

Progress:

Sizes ≥ 2∆ suffice (Haxell, 2001)

2∆ is tight (Szabó-Tardos, 2006)

Construction with sizes exactly

2∆− 1, but no indep. trans.

But if degrees are not concentrated,∗ then sizes
≥ (1 + o(1))∆ suffice. (L.-Sudakov, 2007)

∗ i.e., if each vertex sends only o(∆) edges into each other part
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Bounding probabilities

Question

Let B1, . . . ,Bn be “bad” events in a probability space. How can
one show that with positive probability, none of the Bi occur?

Observations:

For the Ramsey lower bound, the union bound
P[some Bi ] ≤

∑
P[Bi ] was already below 1.

Consider flipping 2000 fair coins, and let Bi be the event that
the i-th coin is heads.

The union bound only gives P[some Bi ] ≤
∑

P[Bi ] = 1000.

Yet no matter how many independent coins we flip, it is
possible (although unlikely) that all are tails.
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The Local Lemma

Erdős-Lovász (1975)

Let B1, . . . ,Bn be “bad” events, such that for some p, d :

Every P[Bi ] ≤ p.

Each Bi is independent of all but ≤ d of the other Bj .

ep(d + 1) ≤ 1, where e ≈ 2.718.

Then with positive probability, none of the Bi occur.

x

Proof that sizes = 2e∆ guarantee an indep. transversal.

Randomly pick one vertex per group.

For each edge x , let Bx be the event
that both endpoints of x were picked.

Let p = P[Bx ] = 1
(2e∆)2

.

Let d = 2 · (2e∆) ·∆− 2.

Then ep(d + 1) < 1, so there is an outcome when none
of the Bx occur, i.e., an independent transversal exists. �
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Erdős-Lovász (1975)

Let B1, . . . ,Bn be “bad” events, such that for some p, d :

Every P[Bi ] ≤ p.

Each Bi is independent of all but ≤ d of the other Bj .

ep(d + 1) ≤ 1, where e ≈ 2.718.

Then with positive probability, none of the Bi occur.

x

Proof that sizes = 2e∆ guarantee an indep. transversal.

Randomly pick one vertex per group.

For each edge x , let Bx be the event
that both endpoints of x were picked.

Let p = P[Bx ] = 1
(2e∆)2

.

Let d = 2 · (2e∆) ·∆− 2.

Then ep(d + 1) < 1, so there is an outcome when none
of the Bx occur, i.e., an independent transversal exists. �



The Local Lemma
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Sperner’s Theorem

Sperner (1928)

Let F be a family of subsets of {1, . . . , n} that is an antichain, i.e.,
no A,B ∈ F satisfy A ⊂ B. Then |F| ≤

( n
bn/2c

)
.

Proof that
∑
A∈F

1( n
|A|

) ≤ 1.

Let (x1, x2, . . . , xn) be a random permutation of {1, . . . n}.
For each A ∈ F , let EA be the event that {x1, . . . , x|A|} = A.

The EA are mutually exclusive since F is an antichain, so:

∑
A∈F

1( n
|A|

) =

∑
A∈F

P[EA] = P[some EA occurs] ≤ 1.
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The Littlewood-Offord problem

Erdős (1945)

Let x1, . . . , xn be real numbers greater than 1. Let S be a
collection of sums of distinct xi , such that any s, s ′ ∈ S satisfy
|s − s ′| ≤ 1. Then |S | ≤

( n
bn/2c

)
.

Proof.

For each element s ∈ S , we may define a set As ⊂ {1, . . . , n}
such that s =

∑
i∈As

xi .

Let F be the collection of all such As .

Every As 6⊂ As′ because all xi > 1.

Sperner’s Theorem implies that |F| ≤
( n
bn/2c

)
. �
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Planarity

Definition

A graph is planar if it can be drawn with no crossing edges.

K4

K4, planar drawing K3,3 is never planar

Famous theorems:

The vertices of any planar graph can be colored with only 4
colors, s.t. no pair of adjacent vertices gets the same color.

Kuratowski: A graph is planar iff it does not contain a
topological copy of K3,3 or K5.

Euler formula: Vertices− Edges + Faces = 2.
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Crossing number

Definition

The crossing number cr(G ) of a graph G is the minimum number
of pairs of edges that cross in a drawing.

Ajtai-Chvátal-Newborn-Szemerédi and Leighton (1982)

Any graph with V vertices and E ≥ 4V edges has cr ≥ E3

64V 2 .

First show: E ≤ 3V − 6 for planar graphs.

2E = sum of perimeters of faces ≥ 3F .

Substitute F ≤ 2
3E into Euler formula V − E + F = 2 :

2 = V − E + F ≤ V − 1

3
E . �

Corollary: E − cr ≤ 3V − 6

=⇒ cr ≥ E

′

− 3V .
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The power of randomness

cr ≥ E

′

− 3V

Proof that cr(G) ≥ E3

64V2 whenever E ≥ 4V.

Fix a drawing of G , and let X = #crossings.

Randomly keep each vertex with probability p = 4V
E .

Let V ′,E ′,X ′ be numbers of vertices, edges, crossings left.

X ′ ≥ E ′ − 3V ′

, so E[X ′] ≥ E[E ′]− 3E[V ′].

E[X ′] = Xp4, E[E ′] = Ep2, and E[V ′] = Vp, so:

Xp4 ≥ Ep2 − 3Vp

X ≥ p−2 · (E − 3Vp−1)

=

(
E

4V

)2

· E

4
.

�
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64V2 whenever E ≥ 4V.
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E .
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Point-line incidences

Szemerédi-Trotter (1983)

Let P be a set of n points, and L be a set of m lines. Then only
I ≤ 4(m2/3n2/3 + m + n) pairs (p, `) ∈ P × L have p lying on `.

Proof. Let G be defined by the drawing of P and L. Then:

V = n

cr(G ) ≤
(m

2

)
≤ m2

2

E ≥
∑
`∈L

(#{p ∈ `} − 1) = I −m

The Crossing Lemma showed that either:

E < 4V ⇒ I −m < 4n

cr(G ) ≥ E3

64V 2 .

⇒ (I −m)3 ≤ 32m2n2.

Both cases give I −m ≤ 4(m2/3n2/3 + n). �
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Combinatorial number theory

Definition

For A ⊂ R, let A + A = {a + b : a, b ∈ A}, A ·A = {ab : a, b ∈ A}.

Question

Must one of A + A or A · A always be substantially larger than A?

If A = {21, 22, . . . , 2n}, then A · A = {22, 23, . . . , 22n} has size
≈ 2|A|, but |A + A| =

(n
2

)
≈ 1

2 |A|
2.

If A = {1, 2, . . . , n}, then A + A = {2, 3, . . . , 2n} has size

≈ 2|A|, but |A · A| & |A|2
log |A| .

Erdős-Szemerédi (1983)

There is a constant c > 0 such that |A + A| or |A · A| is & |A|1+c .
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Sum-product via incidences

Proof that |A + A| or |A · A| is always & n5/4, when |A| = n.

Let `a,b be the line y = a(x − b), and let L = {`a,b : a, b ∈ A}.
Let P be the set of points (x , y) with x ∈ A+A and y ∈ A ·A.

Each `a,b contains every point (c + b, ac) with c ∈ A.
Hence `a,b intersects ≥ |A| = n points of P.

There are n2 lines `a,b, so there are I ≥ n3 total incidences.

Szemerédi-Trotter implies that I ≤ 4(|L|2/3|P|2/3 + |L|+ |P|).
|L| = n2 ≤ |P|

, and |P| ≤ |L|2/3|P|2/3 since |P| ≤ n4 = |L|2.

n9/3 = n3 ≤

I ≤ 4 · 3 · |L|2/3|P|2/3

= 12 · n4/3 · |P|2/3

1

12
n5/3 ≤ |P|2/3

0.024n5/2 ≤ |P||P| = |A + A| · |A · A|.

Therefore, |A + A| or |A · A| must be & n5/4. �



Sum-product via incidences

Proof that |A + A| or |A · A| is always & n5/4, when |A| = n.

Let `a,b be the line y = a(x − b), and let L = {`a,b : a, b ∈ A}.
Let P be the set of points (x , y) with x ∈ A+A and y ∈ A ·A.

Each `a,b contains every point (c + b, ac) with c ∈ A.
Hence `a,b intersects ≥ |A| = n points of P.

There are n2 lines `a,b, so there are I ≥ n3 total incidences.
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Szemerédi-Trotter implies that I ≤ 4(|L|2/3|P|2/3 + |L|+ |P|).
|L| = n2 ≤ |P|, and |P| ≤ |L|2/3|P|2/3 since |P| ≤ n4 = |L|2.

n9/3 = n3 ≤ I ≤ 4 · 3 · |L|2/3|P|2/3 = 12 · n4/3 · |P|2/3

1

12
n5/3 ≤ |P|2/3

0.024n5/2 ≤ |P| = |A + A| · |A · A|.

Therefore, |A + A| or |A · A| must be & n5/4. �





Program information

IPAM Fall 2009
Los Angeles, California

Combinatorics:

Methods and Applications in

Mathematics and Computer Science

Workshop 1. Probabilistic techniques and applications

Workshop 2. Combinatorial geometry

Workshop 3. Topics in graphs and hypergraphs

Workshop 4. Analytical methods in combinatorics, additive
number theory and computer science

Organizers: N. Alon, G. Kalai, J. Pach, V. Sós, A. Steger, B. Sudakov, T. Tao.


	Presentation
	Ramsey numbers
	Sociology
	Upper bounds for Ramsey numbers
	trans: Bounds for Ramsey numbers
	trans: Proof of lower bound

	Independent transversals
	Introduction
	Results
	Bounding probabilities
	The Local Lemma

	Sperner's Theorem and the Littlewood-Offord problem
	Sperner's Theorem
	The Littlewood-Offord problem

	Crossing lemma, Szemerédi-Trotter, and Sum-Product over R
	Planarity
	Crossing lemma
	trans: Proof
	Point-line incidences
	Combinatorial number theory
	trans: Sum-product results
	Sum-product via incidences

	Program information

