USING UNCERTAINTY TO ESTABLISH CERTAINTY
 Po-Shen Loh, Princeton University

IPAM Fall 2009

Combinatorics:
Methods and Applications in
Mathematics and Computer Science

Observation (S. Szalai, sociologist)

Every group of about 20 children contains a set of 4 children, any two of which are friends, or a set of 4 children, no two of which are friends.

Sociology . . or Ramsey Theory?

Observation (S. Szalai, sociologist)

Every group of about 20 children contains a set of 4 children, any two of which are friends, or a set of 4 children, no two of which are friends.
... but after discussion with Hungarian mathematicians Erdős, Turán, and Sós:

Ramsey number $R(4,4)$

Draw 18 points, and connect some pairs of them by lines. No matter how this is done, there will always exist either:

- a set of 4 points, with all pairs connected, or
- a set of 4 points, with no pairs connected.

Upper bounds for Ramsey numbers

Definition
Let $R(r, s)$ be the smallest integer such that every graph with $R(r, s)$ vertices contains either a clique of size r or an independent set of size s.

Upper bounds for Ramsey numbers

DEFINITION

Let $R(r, s)$ be the smallest integer such that every graph with $R(r, s)$ vertices contains either a clique of size r or an independent set of size s.

Erdős-Szekeres (1935)

Every graph G with $\binom{r+s-2}{r-1}$ vertices contains either a clique of size r or an independent set of size s, i.e., $R(r, s) \leq\binom{ r+s-2}{r-1}$.

Upper bounds for Ramsey numbers

DEFINITION

Let $R(r, s)$ be the smallest integer such that every graph with $R(r, s)$ vertices contains either a clique of size r or an independent set of size s.

Erdős-Szekeres (1935)

Every graph G with $\binom{r+s-2}{r-1}$ vertices contains either a clique of size r or an independent set of size s, i.e., $R(r, s) \leq\binom{ r+s-2}{r-1}$.

Proof. Induction on $r+s$. Let $u_{r, s}=\binom{r+s-2}{r-1}$. Since $u_{r, s}=u_{r-1, s}+u_{r, s-1}$, any vertex $v \in G$ has either:

- at least $u_{r-1, s}$ neighbors, or
- at least $u_{r, s-1}$ non-nbrs.

Upper bounds for Ramsey numbers

DEFINITION

Let $R(r, s)$ be the smallest integer such that every graph with $R(r, s)$ vertices contains either a clique of size r or an independent set of size s.

ERDŐS-Szekeres (1935)

Every graph G with $\binom{r+s-2}{r-1}$ vertices contains either a clique of size r or an independent set of size s, i.e., $R(r, s) \leq\binom{ r+s-2}{r-1}$.

Proof. Induction on $r+s$. Let $u_{r, s}=\binom{r+s-2}{r-1}$. Since $u_{r, s}=u_{r-1, s}+u_{r, s-1}$, any vertex $v \in G$ has either:

- at least $u_{r-1, s}$ neighbors \Rightarrow clique of size $r-1$
- at least $u_{r, s-1}$ non-nbrs.

Upper bounds for Ramsey numbers

DEFINITION

Let $R(r, s)$ be the smallest integer such that every graph with $R(r, s)$ vertices contains either a clique of size r or an independent set of size s.

Erdős-Szekeres (1935)

Every graph G with $\binom{r+s-2}{r-1}$ vertices contains either a clique of size r or an independent set of size s, i.e., $R(r, s) \leq\binom{ r+s-2}{r-1}$.

Proof. Induction on $r+s$. Let $u_{r, s}=\binom{r+s-2}{r-1}$. Since $u_{r, s}=u_{r-1, s}+u_{r, s-1}$, any vertex $v \in G$ has either:

- at least $u_{r-1, s}$ neighbors \Rightarrow clique of size $r-1$
- at least $u_{r, s-1}$ non-nbrs. \Rightarrow independent set of size $s-1$.

Upper bounds for Ramsey numbers

Erdős-Szekeres (1935)

Every graph G with $\binom{r+s-2}{r-1}$ vertices contains either a clique of size r or an independent set of size s, i.e., $R(r, s) \leq\binom{ r+s-2}{r-1}$.

Upper bounds for Ramsey numbers

ERDŐs-Szekeres (1935)

Every graph G with $\binom{r+s-2}{r-1}$ vertices contains either a clique of size r or an independent set of size s, i.e., $R(r, s) \leq\binom{ r+s-2}{r-1}$.

Upper bounds for Ramsey numbers

Erdős-Szekeres (1935)

Every graph G with $\binom{r+s-2}{r-1}$ vertices contains either a clique of size r or an independent set of size s, i.e., $R(r, s) \leq\binom{ r+s-2}{r-1}$.

Upper bounds for Ramsey numbers

ERDŐS-Szekeres (1935)

Every graph G with $\binom{r+s-2}{r-1}$ vertices contains either a clique of size r or an independent set of size s, i.e., $R(r, s) \leq\binom{ r+s-2}{r-1}$.

Upper bounds for Ramsey numbers

ERDŐs-Szekeres (1935)

Every graph G with $\binom{r+s-2}{r-1}$ vertices contains either a clique of size r or an independent set of size s, i.e., $R(r, s) \leq\binom{ r+s-2}{r-1}$.

Upper bounds for Ramsey numbers

Erdős-Szekeres (1935)

Every graph G with $\binom{r+s-2}{r-1}$ vertices contains either a clique of size r or an independent set of size s, i.e., $R(r, s) \leq\binom{ r+s-2}{r-1}$.

Upper bounds for Ramsey numbers

ERDŐS-Szekeres (1935)

Every graph G with $\binom{r+s-2}{r-1}$ vertices contains either a clique of size r or an independent set of size s, i.e., $R(r, s) \leq\binom{ r+s-2}{r-1}$.

Upper bounds for Ramsey numbers

ERDŐs-Szekeres (1935)

Every graph G with $\binom{r+s-2}{r-1}$ vertices contains either a clique of size r or an independent set of size s, i.e., $R(r, s) \leq\binom{ r+s-2}{r-1}$.

Upper bounds for Ramsey numbers

Erdős-Szekeres (1935)

Every graph G with $\binom{r+s-2}{r-1}$ vertices contains either a clique of size r or an independent set of size s, i.e., $R(r, s) \leq\binom{ r+s-2}{r-1}$.

ERDŐS-Szekeres (1935)

Every graph G with $\binom{r+s-2}{r-1}$ vertices contains either a clique of size r or an independent set of size s, i.e., $R(r, s) \leq\binom{ r+s-2}{r-1}$.

Bounds for Ramsey numbers

ERDŐS-Szekeres (1935)

Every graph G with $\binom{r+s-2}{r-1}$ vertices contains either a clique of size r or an independent set of size s, i.e., $R(r, s) \leq\binom{ r+s-2}{r-1}$.

- The diagonal bound is $R(r, r) \leq\binom{ 2 r-2}{r-1} \approx 2^{2 r}$.
- To lower-bound $R(r, r)$, one must construct a large graph with all cliques and independent sets smaller than r.
- For years, the best construction was only polynomial in r.

Bounds for Ramsey numbers

ERdős-Szekeres (1935)

Every graph G with $\binom{r+s-2}{r-1}$ vertices contains either a clique of size r or an independent set of size s, i.e., $R(r, s) \leq\binom{ r+s-2}{r-1}$.

- The diagonal bound is $R(r, r) \leq\binom{ 2 r-2}{r-1} \approx 2^{2 r}$.
- To lower-bound $R(r, r)$, one must construct a large graph with all cliques and independent sets smaller than r.
- For years, the best construction was only polynomial in r.

ERDős (1947)

There exists a graph with $2^{r / 2}$ vertices, but with all cliques and independent sets smaller than r.

Bounds for Ramsey numbers

ERDős (1947)
There exists a graph with $2^{r / 2}$ vertices, but with all cliques and independent sets smaller than r.

Bounds for Ramsey numbers

Erdős (1947)

There exists a graph with $2^{r / 2}$ vertices, but with all cliques and independent sets smaller than r.

Bounds for Ramsey numbers

Erdős (1947)

There exists a graph with $2^{r / 2}$ vertices, but with all cliques and independent sets smaller than r.

Bounds for Ramsey numbers

ERDős (1947)

There exists a graph with $2^{r / 2}$ vertices, but with all cliques and independent sets smaller than r.

Bounds for Ramsey numbers

ERDős (1947)
There exists a graph with $2^{r / 2}$ vertices, but with all cliques and independent sets smaller than r.

Bounds for Ramsey numbers

ERDős (1947)

There exists a graph with $2^{r / 2}$ vertices, but with all cliques and independent sets smaller than r.

Bounds for Ramsey numbers

ERDős (1947)
There exists a graph with $2^{r / 2}$ vertices, but with all cliques and independent sets smaller than r.

Bounds for Ramsey numbers

ERDős (1947)
There exists a graph with $2^{r / 2}$ vertices, but with all cliques and independent sets smaller than r.

Bounds for Ramsey numbers

Erdős (1947)
There exists a graph with $2^{r / 2}$ vertices, but with all cliques and independent sets smaller than r.

Bounds for Ramsey numbers

Erdős (1947)

There exists a graph with $2^{r / 2}$ vertices, but with all cliques and independent sets smaller than r.

Bounds for Ramsey numbers

ERDős (1947)

There exists a graph with $2^{r / 2}$ vertices, but with all cliques and independent sets smaller than r.

Bounds for Ramsey numbers

Erdős (1947)

There exists a graph with $2^{r / 2}$ vertices, but with all cliques and independent sets smaller than r.

Bounds for Ramsey numbers

Erdős (1947)
There exists a graph with $2^{r / 2}$ vertices, but with all cliques and independent sets smaller than r.

Bounds for Ramsey numbers

ERDős (1947)
There exists a graph with $2^{r / 2}$ vertices, but with all cliques and independent sets smaller than r.

Bounds for Ramsey numbers

ERDős (1947)

There exists a graph with $2^{r / 2}$ vertices, but with all cliques and independent sets smaller than r.

ERDŐs (1947)

There exists a graph with $2^{r / 2}$ vertices, but with all cliques and independent sets smaller than r.

Proof.

- Let $n=2^{r / 2}$, and let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be vertices.
- For each pair of vertices, place an edge with probability $\frac{1}{2}$.
- For every set S of r vertices, let B_{S} be the event that either all or none of the edges within S appear.

Proof of LOWER BOUND

ERDős (1947)

There exists a graph with $2^{r / 2}$ vertices, but with all cliques and independent sets smaller than r.

Proof.

- Let $n=2^{r / 2}$, and let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be vertices.
- For each pair of vertices, place an edge with probability $\frac{1}{2}$.
- For every set S of r vertices, let B_{S} be the event that either all or none of the edges within S appear.
- For each of the $\binom{n}{r}$ sets $S, \mathbb{P}\left[B_{S}\right]=2 \cdot 2^{-\binom{r}{2} \text {. So } 0 \text { or } 0 \text {. }}$ \mathbb{P} [some B_{S} occurs] is at most

$$
\begin{aligned}
\binom{n}{r} \cdot 2 \cdot 2^{-\binom{r}{2}} & \leq \frac{n^{r}}{r!} \cdot 2 \cdot 2^{-\frac{r^{2}-r}{2}} \\
& =\left(2^{r / 2}\right)^{r} / r!\cdot 2^{1-\frac{r^{2}-r}{2}} \\
& =2^{1+r / 2} / r!<1 .
\end{aligned}
$$

Proof of LOWER BOUND

ERDŐs (1947)

There exists a graph with $2^{r / 2}$ vertices, but with all cliques and independent sets smaller than r.

Proof.

- Let $n=2^{r / 2}$, and let $V=\left\{v_{1}, \ldots, v_{n}\right\}$ be vertices.
- For each pair of vertices, place an edge with probability $\frac{1}{2}$.
- For every set S of r vertices, let B_{S} be the event that either all or none of the edges within S appear.
- For each of the $\binom{n}{r}$ sets $S, \mathbb{P}\left[B_{S}\right]=2 \cdot 2^{-\binom{r}{2} \text {. So } 0 \text { or } 0 \text {. }}$ \mathbb{P} [some B_{S} occurs] is at most

$$
\begin{aligned}
\binom{n}{r} \cdot 2 \cdot 2^{-\binom{r}{2}} & \leq \frac{n^{r}}{r!} \cdot 2 \cdot 2^{-\frac{r^{2}-r}{2}} \\
& =\left(2^{r / 2}\right)^{r} / r!\cdot 2^{1-\frac{r^{2}-r}{2}} \\
& =2^{1+r / 2} / r!\rightarrow 0 .
\end{aligned}
$$

Definition

An independent transversal has one vertex per group, with no edges between the vertices.

Definition

An independent transversal has one vertex per group, with no edges between the vertices.

Let Δ be the maximum degree of the graph (max. number of edges incident to any vertex).

Definition

An independent transversal has one vertex per group, with no edges between the vertices.

Let Δ be the maximum degree of the graph (max. number of edges incident to any vertex).

Alon (1988)

If every group has size $\geq 2 e \Delta$, then indep. trans. always exists, no matter how many groups there are.

INDEPENDENT TRANSVERSALS

INDEPENDENT TRANSVERSALS

Remark. In this example, Δ is bounded by local geometry, but the number of towers (vertex groups) can be arbitrarily large.

Alon (1988)
If every group has size $\geq 2 e \Delta$, then an independent transversal always exists, no matter how many groups there are.

Progress:

- Sizes $\geq 2 \Delta$ suffice (Haxell, 2001)

Alon (1988)

If every group has size $\geq 2 e \Delta$, then an independent transversal always exists, no matter how many groups there are.

Progress:

- Sizes $\geq 2 \Delta$ suffice (Haxell, 2001)
- 2Δ is tight (Szabó-Tardos, 2006) Construction with sizes exactly $2 \Delta-1$, but no indep. trans.

Alon (1988)

If every group has size $\geq 2 e \Delta$, then an independent transversal always exists, no matter how many groups there are.

Progress:

- Sizes $\geq 2 \Delta$ suffice (Haxell, 2001)
- 2Δ is tight (Szabó-Tardos, 2006) Construction with sizes exactly $2 \Delta-1$, but no indep. trans.

- But if degrees are not concentrated, ${ }^{*}$ then sizes $\geq(1+o(1)) \Delta$ suffice. (L.-Sudakov, 2007)
* i.e., if each vertex sends only $o(\Delta)$ edges into each other part

QuEstion

Let B_{1}, \ldots, B_{n} be "bad" events in a probability space. How can one show that with positive probability, none of the B_{i} occur?

Observations:

- For the Ramsey lower bound, the union bound $\mathbb{P}\left[\right.$ some $\left.B_{i}\right] \leq \sum \mathbb{P}\left[B_{i}\right]$ was already below 1 .

Bounding Probabilities

Question

Let B_{1}, \ldots, B_{n} be "bad" events in a probability space. How can one show that with positive probability, none of the B_{i} occur?

Observations:

- For the Ramsey lower bound, the union bound $\mathbb{P}\left[\right.$ some $\left.B_{i}\right] \leq \sum \mathbb{P}\left[B_{i}\right]$ was already below 1 .
- Consider flipping 2000 fair coins, and let B_{i} be the event that the i-th coin is heads.
- The union bound only gives $\mathbb{P}\left[\right.$ some $\left.B_{i}\right] \leq \sum \mathbb{P}\left[B_{i}\right]=1000$.

Bounding probabilities

QUESTION

Let B_{1}, \ldots, B_{n} be "bad" events in a probability space. How can one show that with positive probability, none of the B_{i} occur?

Observations:

- For the Ramsey lower bound, the union bound $\mathbb{P}\left[\right.$ some $\left.B_{i}\right] \leq \sum \mathbb{P}\left[B_{i}\right]$ was already below 1 .
- Consider flipping 2000 fair coins, and let B_{i} be the event that the i-th coin is heads.
- The union bound only gives $\mathbb{P}\left[\right.$ some $\left.B_{i}\right] \leq \sum \mathbb{P}\left[B_{i}\right]=1000$.
- Yet no matter how many independent coins we flip, it is possible (although unlikely) that all are tails.

ERDŐS-LovÁsz (1975)

Let B_{1}, \ldots, B_{n} be "bad" events, such that for some p, d :

- Every $\mathbb{P}\left[B_{i}\right] \leq p$.
- Each B_{i} is independent of all but $\leq d$ of the other B_{j}.
- ep $(d+1) \leq 1$, where $e \approx 2.718$.

Then with positive probability, none of the B_{i} occur.

ERDŐS-LOVÁSz (1975)

Let B_{1}, \ldots, B_{n} be "bad" events, such that for some p, d :

- Every $\mathbb{P}\left[B_{i}\right] \leq p$.
- Each B_{i} is independent of all but $\leq d$ of the other B_{j}.
- ep $(d+1) \leq 1$, where $e \approx 2.718$.

Then with positive probability, none of the B_{i} occur.
Proof that sizes $=2 e \Delta$ guarantee an indep. transversal.

ERDŐS-LOVÁSz (1975)

Let B_{1}, \ldots, B_{n} be "bad" events, such that for some p, d :

- Every $\mathbb{P}\left[B_{i}\right] \leq p$.
- Each B_{i} is independent of all but $\leq d$ of the other B_{j}.
- ep $(d+1) \leq 1$, where $e \approx 2.718$.

Then with positive probability, none of the B_{i} occur.
Proof that sizes $=2 e \Delta$ guarantee an indep. transversal.

- Randomly pick one vertex per group.

ERDŐS-LOVÁSz (1975)

Let B_{1}, \ldots, B_{n} be "bad" events, such that for some p, d :

- Every $\mathbb{P}\left[B_{i}\right] \leq p$.
- Each B_{i} is independent of all but $\leq d$ of the other B_{j}.
- ep $(d+1) \leq 1$, where $e \approx 2.718$.

Then with positive probability, none of the B_{i} occur.
Proof that sizes $=2 e \Delta$ guarantee an indep. transversal.

- Randomly pick one vertex per group.
- For each edge x, let B_{x} be the event that both endpoints of x were picked.
- Let $p=\mathbb{P}\left[B_{x}\right]=\frac{1}{(2 e \Delta)^{2}}$.

The Local Lemma

ERDŐS-LOVÁSz (1975)

Let B_{1}, \ldots, B_{n} be "bad" events, such that for some p, d :

- Every $\mathbb{P}\left[B_{i}\right] \leq p$.
- Each B_{i} is independent of all but $\leq d$ of the other B_{j}.
- ep $(d+1) \leq 1$, where $e \approx 2.718$.

Then with positive probability, none of the B_{i} occur.
Proof that sizes $=2 e \Delta$ guarantee an indep. transversal.

- Randomly pick one vertex per group.
- For each edge x, let B_{x} be the event that both endpoints of x were picked.
- Let $p=\mathbb{P}\left[B_{x}\right]=\frac{1}{(2 e \Delta)^{2}}$.
- Let $d=2 \cdot(2 e \Delta) \cdot \Delta-2$.

- Then $e p(d+1)<1$, so there is an outcome when none of the B_{x} occur, i.e., an independent transversal exists.

Sperner's Theorem

Sperner (1928)

Let \mathcal{F} be a family of subsets of $\{1, \ldots, n\}$ that is an antichain, i.e., no $A, B \in F$ satisfy $A \subset B$. Then $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

Sperner's Theorem

Sperner (1928)

Let \mathcal{F} be a family of subsets of $\{1, \ldots, n\}$ that is an antichain, i.e., no $A, B \in F$ satisfy $A \subset B$. Then $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

Proof that $\sum_{\mathbf{A} \in \mathcal{F}} \frac{1}{\binom{n}{|\mathbf{A}|}} \leq 1$.

Sperner's Theorem

Sperner (1928)

Let \mathcal{F} be a family of subsets of $\{1, \ldots, n\}$ that is an antichain, i.e., no $A, B \in F$ satisfy $A \subset B$. Then $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

Proof that $\sum_{\mathbf{A} \in \mathcal{F}} \frac{1}{\binom{\mathbf{n}}{|\mathbf{A}|}} \leq 1$.

- Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a random permutation of $\{1, \ldots n\}$.
- For each $A \in \mathcal{F}$, let E_{A} be the event that $\left\{x_{1}, \ldots, x_{|A|}\right\}=A$.

Sperner (1928)

Let \mathcal{F} be a family of subsets of $\{1, \ldots, n\}$ that is an antichain, i.e., no $A, B \in F$ satisfy $A \subset B$. Then $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

Proof that $\sum_{\mathbf{A} \in \mathcal{F}} \frac{1}{\binom{\mathbf{n}}{|\mathbf{A}|}} \leq 1$.

- Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a random permutation of $\{1, \ldots n\}$.
- For each $A \in \mathcal{F}$, let E_{A} be the event that $\left\{x_{1}, \ldots, x_{|A|}\right\}=A$.
- The E_{A} are mutually exclusive since \mathcal{F} is an antichain, so:

$$
\sum_{A \in \mathcal{F}} \mathbb{P}\left[E_{A}\right]=\mathbb{P}\left[\text { some } E_{A} \text { occurs }\right] \leq 1
$$

Sperner (1928)

Let \mathcal{F} be a family of subsets of $\{1, \ldots, n\}$ that is an antichain, i.e., no $A, B \in F$ satisfy $A \subset B$. Then $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

Proof that $\sum_{\mathbf{A} \in \mathcal{F}} \frac{1}{\binom{\mathbf{n}}{|\mathbf{A}|}} \leq 1$.

- Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a random permutation of $\{1, \ldots n\}$.
- For each $A \in \mathcal{F}$, let E_{A} be the event that $\left\{x_{1}, \ldots, x_{|A|}\right\}=A$.
- The E_{A} are mutually exclusive since \mathcal{F} is an antichain, so:

$$
\sum_{A \in \mathcal{F}} \frac{1}{\binom{n}{|A|}}=\sum_{A \in \mathcal{F}} \mathbb{P}\left[E_{A}\right]=\mathbb{P}\left[\text { some } E_{A} \text { occurs }\right] \leq 1
$$

ERDős (1945)
Let x_{1}, \ldots, x_{n} be real numbers greater than 1 . Let S be a collection of sums of distinct x_{i}, such that any $s, s^{\prime} \in S$ satisfy $\left|s-s^{\prime}\right| \leq 1$. Then $|S| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

ERDŐS (1945)

Let x_{1}, \ldots, x_{n} be real numbers greater than 1 . Let S be a collection of sums of distinct x_{i}, such that any $s, s^{\prime} \in S$ satisfy $\left|s-s^{\prime}\right| \leq 1$. Then $|S| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

Proof.

- For each element $s \in S$, we may define a set $A_{s} \subset\{1, \ldots, n\}$ such that $s=\sum_{i \in A_{s}} x_{i}$.
- Let \mathcal{F} be the collection of all such A_{s}.
- Every $A_{s} \not \subset A_{s^{\prime}}$ because all $x_{i}>1$.
- Sperner's Theorem implies that $|\mathcal{F}| \leq\binom{ n}{\lfloor n / 2\rfloor}$.

PLANARITY

DEFINITION

A graph is planar if it can be drawn with no crossing edges.

K_{4}

PLANARITY

DEFINITION

A graph is planar if it can be drawn with no crossing edges.

K_{4}

K_{4}, planar drawing

DEFINITION

A graph is planar if it can be drawn with no crossing edges.

K_{4}

K_{4}, planar drawing

$K_{3,3}$ is never planar

DEFINITION

A graph is planar if it can be drawn with no crossing edges.

K_{4}

K_{4}, planar drawing

$K_{3,3}$ is never planar

Famous theorems:

- The vertices of any planar graph can be colored with only 4 colors, s.t. no pair of adjacent vertices gets the same color.
- Kuratowski: A graph is planar iff it does not contain a topological copy of $K_{3,3}$ or K_{5}.
- Euler formula: Vertices - Edges + Faces $=2$.

Definition

The crossing number $\operatorname{cr}(G)$ of a graph G is the minimum number of pairs of edges that cross in a drawing.

Crossing NuMBER

Definition

The crossing number $\operatorname{cr}(G)$ of a graph G is the minimum number of pairs of edges that cross in a drawing.

Ajtai-Chvátal-Newborn-Szemerédi and Leighton (1982)

Any graph with V vertices and $E \geq 4 V$ edges has $\mathrm{cr} \geq \frac{E^{3}}{64 V^{2}}$.

Crossing number

Definition

The crossing number $\operatorname{cr}(G)$ of a graph G is the minimum number of pairs of edges that cross in a drawing.

Ajtai-Chvátal-Newborn-Szemerédi and Leighton (1982)

Any graph with V vertices and $E \geq 4 V$ edges has $\mathrm{cr} \geq \frac{E^{3}}{64 V^{2}}$.

First show: $E \leq 3 V-6$ for planar graphs.

- $2 E=$ sum of perimeters of faces $\geq 3 F$.

Crossing number

Definition

The crossing number $\operatorname{cr}(G)$ of a graph G is the minimum number of pairs of edges that cross in a drawing.

Ajtai-Chvátal-Newborn-Szemerédi and Leighton (1982)

Any graph with V vertices and $E \geq 4 V$ edges has $\mathrm{cr} \geq \frac{E^{3}}{64 V^{2}}$.

First show: $E \leq 3 V-6$ for planar graphs.

- $2 E=$ sum of perimeters of faces $\geq 3 F$.
- Substitute $F \leq \frac{2}{3} E$ into Euler formula $V-E+F=2$:

$$
2=V-E+F \leq V-\frac{1}{3} E .
$$

Crossing number

Definition

The crossing number $\operatorname{cr}(G)$ of a graph G is the minimum number of pairs of edges that cross in a drawing.

Ajtai-Chvátal-Newborn-Szemerédi and Leighton (1982)

Any graph with V vertices and $E \geq 4 V$ edges has $\mathrm{cr} \geq \frac{E^{3}}{64 V^{2}}$.

First show: $E \leq 3 V-6$ for planar graphs.

- $2 E=$ sum of perimeters of faces $\geq 3 F$.
- Substitute $F \leq \frac{2}{3} E$ into Euler formula $V-E+F=2$:

$$
2=V-E+F \leq V-\frac{1}{3} E .
$$

Corollary: $E-\mathrm{cr} \leq 3 V-6$

Crossing number

Definition

The crossing number $\operatorname{cr}(G)$ of a graph G is the minimum number of pairs of edges that cross in a drawing.

Ajtai-Chvátal-Newborn-Szemerédi and Leighton (1982)

Any graph with V vertices and $E \geq 4 V$ edges has $\mathrm{cr} \geq \frac{E^{3}}{64 V^{2}}$.

First show: $E \leq 3 V-6$ for planar graphs.

- $2 E=$ sum of perimeters of faces $\geq 3 F$.
- Substitute $F \leq \frac{2}{3} E$ into Euler formula $V-E+F=2$:

$$
2=V-E+F \leq V-\frac{1}{3} E .
$$

Corollary: $E-\mathrm{cr} \leq 3 V-6 \Longrightarrow \mathrm{cr} \geq E-3 V$.

$$
\mathrm{cr} \geq E-3 V
$$

$\mathrm{cr} \geq E-3 V$

$$
\mathrm{cr} \geq E-3 V
$$

$\mathrm{cr} \geq E-3 V$
$\mathrm{cr} \geq E-3 V$

$$
\mathrm{cr} \geq E-3 V
$$

$\mathrm{cr} \geq E-3 V$
$\mathrm{cr} \geq E-3 V$
$\mathrm{cr} \geq E-3 V$

$$
\mathrm{cr} \geq E-3 V
$$

$$
\mathrm{cr} \geq E-3 V
$$

$\mathrm{cr} \geq E-3 V$

THE POWER OF RANDOMNESS

Proof that $\operatorname{cr}(G) \geq \frac{\mathrm{E}^{3}}{64 \mathrm{~V}^{2}}$ whenever $\mathrm{E} \geq 4 \mathrm{~V}$.

$$
\mathrm{cr} \geq E-3 V
$$

Proof that $\operatorname{cr}(G) \geq \frac{\mathrm{E}^{3}}{64 \mathrm{~V}^{2}}$ whenever $\mathrm{E} \geq 4 \mathrm{~V}$.

- Fix a drawing of G, and let $X=\#$ crossings.
- Randomly keep each vertex with probability $p=\frac{4 V}{E}$.
$\mathrm{cr} \geq E-3 V$

Proof that $\operatorname{cr}(G) \geq \frac{\mathrm{E}^{3}}{64 \mathrm{~V}^{2}}$ whenever $\mathrm{E} \geq 4 \mathrm{~V}$.

- Fix a drawing of G, and let $X=\#$ crossings.
- Randomly keep each vertex with probability $p=\frac{4 V}{E}$.
$\mathrm{cr} \geq E-3 V$

Proof that $\operatorname{cr}(G) \geq \frac{\mathrm{E}^{3}}{64 \mathrm{~V}^{2}}$ whenever $\mathrm{E} \geq 4 \mathrm{~V}$.

- Fix a drawing of G, and let $X=\#$ crossings.
- Randomly keep each vertex with probability $p=\frac{4 V}{E}$.
- Let $V^{\prime}, E^{\prime}, X^{\prime}$ be numbers of vertices, edges, crossings left.
$\mathrm{cr} \geq E-3 V$

Proof that $\operatorname{cr}(G) \geq \frac{\mathrm{E}^{3}}{64 \mathrm{~V}^{2}}$ whenever $\mathrm{E} \geq 4 \mathrm{~V}$.

- Fix a drawing of G, and let $X=\#$ crossings.
- Randomly keep each vertex with probability $p=\frac{4 V}{E}$.
- Let $V^{\prime}, E^{\prime}, X^{\prime}$ be numbers of vertices, edges, crossings left.
- $X^{\prime} \geq E^{\prime}-3 V^{\prime}$

Proof that $\operatorname{cr}(G) \geq \frac{\mathrm{E}^{3}}{64 \mathrm{~V}^{2}}$ whenever $\mathrm{E} \geq 4 \mathrm{~V}$.

- Fix a drawing of G, and let $X=\#$ crossings.
- Randomly keep each vertex with probability $p=\frac{4 V}{E}$.
- Let $V^{\prime}, E^{\prime}, X^{\prime}$ be numbers of vertices, edges, crossings left.
- $X^{\prime} \geq E^{\prime}-3 V^{\prime}$, so $\mathbb{E}\left[X^{\prime}\right] \geq \mathbb{E}\left[E^{\prime}\right]-3 \mathbb{E}\left[V^{\prime}\right]$.

Proof that $\operatorname{cr}(\mathrm{G}) \geq \frac{\mathrm{E}^{3}}{64 \mathrm{~V}^{2}}$ whenever $\mathrm{E} \geq 4 \mathrm{~V}$.

- Fix a drawing of G, and let $X=\#$ crossings.
- Randomly keep each vertex with probability $p=\frac{4 V}{E}$.
- Let $V^{\prime}, E^{\prime}, X^{\prime}$ be numbers of vertices, edges, crossings left.
- $X^{\prime} \geq E^{\prime}-3 V^{\prime}$, so $\mathbb{E}\left[X^{\prime}\right] \geq \mathbb{E}\left[E^{\prime}\right]-3 \mathbb{E}\left[V^{\prime}\right]$.
- $\mathbb{E}\left[X^{\prime}\right]=X p^{4}, \mathbb{E}\left[E^{\prime}\right]=E p^{2}$, and $\mathbb{E}\left[V^{\prime}\right]=V p$.

Proof that $\operatorname{cr}(\mathrm{G}) \geq \frac{\mathrm{E}^{3}}{64 \mathrm{~V}^{2}}$ whenever $\mathrm{E} \geq 4 \mathrm{~V}$.

- Fix a drawing of G, and let $X=\#$ crossings.
- Randomly keep each vertex with probability $p=\frac{4 V}{E}$.
- Let $V^{\prime}, E^{\prime}, X^{\prime}$ be numbers of vertices, edges, crossings left.
- $X^{\prime} \geq E^{\prime}-3 V^{\prime}$, so $\mathbb{E}\left[X^{\prime}\right] \geq \mathbb{E}\left[E^{\prime}\right]-3 \mathbb{E}\left[V^{\prime}\right]$.
- $\mathbb{E}\left[X^{\prime}\right]=X p^{4}, \mathbb{E}\left[E^{\prime}\right]=E p^{2}$, and $\mathbb{E}\left[V^{\prime}\right]=V p$, so:

$$
\begin{aligned}
X p^{4} & \geq E p^{2}-3 V p \\
X & \geq p^{-2} \cdot\left(E-3 V p^{-1}\right) \\
& =\left(\frac{E}{4 V}\right)^{2} \cdot \frac{E}{4}
\end{aligned}
$$

Point-LINE INCIDENCES

Szemerédi-Trotter (1983)

Let P be a set of n points, and L be a set of m lines. Then only $I \leq 4\left(m^{2 / 3} n^{2 / 3}+m+n\right)$ pairs $(p, \ell) \in P \times L$ have p lying on ℓ.

Point-LINE INCIDENCES

Szemerédi-Trotter (1983)

Let P be a set of n points, and L be a set of m lines. Then only $I \leq 4\left(m^{2 / 3} n^{2 / 3}+m+n\right)$ pairs $(p, \ell) \in P \times L$ have p lying on ℓ.

Point-Line incidences

Szemerédi-Trotter (1983)

Let P be a set of n points, and L be a set of m lines. Then only $I \leq 4\left(m^{2 / 3} n^{2 / 3}+m+n\right)$ pairs $(p, \ell) \in P \times L$ have p lying on ℓ.

Proof. Let G be defined by the drawing of P and L.

Point-Line incidences

Szemerédi-Trotter (1983)

Let P be a set of n points, and L be a set of m lines. Then only $I \leq 4\left(m^{2 / 3} n^{2 / 3}+m+n\right)$ pairs $(p, \ell) \in P \times L$ have p lying on ℓ.

Proof. Let G be defined by the drawing of P and L.

Point-Line incidences

Szemerédi-Trotter (1983)

Let P be a set of n points, and L be a set of m lines. Then only $I \leq 4\left(m^{2 / 3} n^{2 / 3}+m+n\right)$ pairs $(p, \ell) \in P \times L$ have p lying on ℓ.

Proof. Let G be defined by the drawing of P and L. Then:

- $V=n$
- $\operatorname{cr}(G) \leq\binom{ m}{2} \leq \frac{m^{2}}{2}$

Point-Line incidences

Szemerédi-Trotter (1983)

Let P be a set of n points, and L be a set of m lines. Then only $I \leq 4\left(m^{2 / 3} n^{2 / 3}+m+n\right)$ pairs $(p, \ell) \in P \times L$ have p lying on ℓ.

Proof. Let G be defined by the drawing of P and L. Then:

- $V=n$
- $\operatorname{cr}(G) \leq\binom{ m}{2} \leq \frac{m^{2}}{2}$
- $E \geq \sum_{\ell \in L}(\#\{p \in \ell\}-1)=I-m$

Point-Line incidences

Szemerédi-Trotter (1983)

Let P be a set of n points, and L be a set of m lines. Then only $I \leq 4\left(m^{2 / 3} n^{2 / 3}+m+n\right)$ pairs $(p, \ell) \in P \times L$ have p lying on ℓ.

Proof. Let G be defined by the drawing of P and L. Then:

- $V=n$
- $\operatorname{cr}(G) \leq\binom{ m}{2} \leq \frac{m^{2}}{2}$
- $E \geq \sum_{\ell \in L}(\#\{p \in \ell\}-1)=I-m$

The Crossing Lemma showed that either:

- $E<4 V$, or

- $\operatorname{cr}(G) \geq \frac{E^{3}}{64 V^{2}}$.

Point-Line incidences

Szemerédi-Trotter (1983)

Let P be a set of n points, and L be a set of m lines. Then only $I \leq 4\left(m^{2 / 3} n^{2 / 3}+m+n\right)$ pairs $(p, \ell) \in P \times L$ have p lying on ℓ.

Proof. Let G be defined by the drawing of P and L. Then:

- $V=n$
- $\operatorname{cr}(G) \leq\binom{ m}{2} \leq \frac{m^{2}}{2}$
- $E \geq \sum_{\ell \in L}(\#\{p \in \ell\}-1)=I-m$

The Crossing Lemma showed that either:

- $E<4 V \Rightarrow I-m<4 n$

- $\operatorname{cr}(G) \geq \frac{E^{3}}{64 V^{2}}$.

Szemerédi-Trotter (1983)

Let P be a set of n points, and L be a set of m lines. Then only $I \leq 4\left(m^{2 / 3} n^{2 / 3}+m+n\right)$ pairs $(p, \ell) \in P \times L$ have p lying on ℓ.

Proof. Let G be defined by the drawing of P and L. Then:

- $V=n$
- $\operatorname{cr}(G) \leq\binom{ m}{2} \leq \frac{m^{2}}{2}$
- $E \geq \sum_{\ell \in L}(\#\{p \in \ell\}-1)=I-m$

The Crossing Lemma showed that either:

- $E<4 V \Rightarrow I-m<4 n$

- $\operatorname{cr}(G) \geq \frac{E^{3}}{64 V^{2}} \Rightarrow \frac{m^{2}}{2} \geq \frac{(I-m)^{3}}{64 n^{2}}$

Szemerédi-Trotter (1983)

Let P be a set of n points, and L be a set of m lines. Then only $I \leq 4\left(m^{2 / 3} n^{2 / 3}+m+n\right)$ pairs $(p, \ell) \in P \times L$ have p lying on ℓ.

Proof. Let G be defined by the drawing of P and L. Then:

- $V=n$
- $\operatorname{cr}(G) \leq\binom{ m}{2} \leq \frac{m^{2}}{2}$
- $E \geq \sum_{\ell \in L}(\#\{p \in \ell\}-1)=I-m$

The Crossing Lemma showed that either:

- $E<4 V \Rightarrow I-m<4 n$

- $\operatorname{cr}(G) \geq \frac{E^{3}}{64 V^{2}} \Rightarrow \frac{m^{2}}{2} \geq \frac{(I-m)^{3}}{64 n^{2}} \Rightarrow(I-m)^{3} \leq 32 m^{2} n^{2}$.

Both cases give $I-m \leq 4\left(m^{2 / 3} n^{2 / 3}+n\right)$.

COMBINATORIAL NUMBER THEORY

DEFINITION

For $A \subset \mathbb{R}$, let $A+A=\{a+b: a, b \in A\}, A \cdot A=\{a b: a, b \in A\}$.

Question

Must one of $A+A$ or $A \cdot A$ always be substantially larger than A ?

COMBINATORIAL NUMBER THEORY

DEFINITION

For $A \subset \mathbb{R}$, let $A+A=\{a+b: a, b \in A\}, A \cdot A=\{a b: a, b \in A\}$.

QuEstion

Must one of $A+A$ or $A \cdot A$ always be substantially larger than A ?

- If $A=\left\{2^{1}, 2^{2}, \ldots, 2^{n}\right\}$, then $A \cdot A=\left\{2^{2}, 2^{3}, \ldots, 2^{2 n}\right\}$ has size $\approx 2|A|$, but $|A+A|=\binom{n}{2} \approx \frac{1}{2}|A|^{2}$.

COMBINATORIAL NUMBER THEORY

DEFINITION

For $A \subset \mathbb{R}$, let $A+A=\{a+b: a, b \in A\}, A \cdot A=\{a b: a, b \in A\}$.

Question

Must one of $A+A$ or $A \cdot A$ always be substantially larger than A ?

- If $A=\left\{2^{1}, 2^{2}, \ldots, 2^{n}\right\}$, then $A \cdot A=\left\{2^{2}, 2^{3}, \ldots, 2^{2 n}\right\}$ has size $\approx 2|A|$, but $|A+A|=\binom{n}{2} \approx \frac{1}{2}|A|^{2}$.
- If $A=\{1,2, \ldots, n\}$, then $A+A=\{2,3, \ldots, 2 n\}$ has size $\approx 2|A|$, but $|A \cdot A| \gtrsim \frac{|A|^{2}}{\log |A|}$.

COMBINATORIAL NUMBER THEORY

DEFINITION

For $A \subset \mathbb{R}$, let $A+A=\{a+b: a, b \in A\}, A \cdot A=\{a b: a, b \in A\}$.

Question

Must one of $A+A$ or $A \cdot A$ always be substantially larger than A ?

- If $A=\left\{2^{1}, 2^{2}, \ldots, 2^{n}\right\}$, then $A \cdot A=\left\{2^{2}, 2^{3}, \ldots, 2^{2 n}\right\}$ has size $\approx 2|A|$, but $|A+A|=\binom{n}{2} \approx \frac{1}{2}|A|^{2}$.
- If $A=\{1,2, \ldots, n\}$, then $A+A=\{2,3, \ldots, 2 n\}$ has size $\approx 2|A|$, but $|A \cdot A| \gtrsim \frac{|A|^{2}}{\log |A|}$.

ERDŐS-SZEMERÉDI (1983)

There is a constant $c>0$ such that $|A+A|$ or $|A \cdot A|$ is $\gtrsim|A|^{1+c}$.

COMBINATORIAL NUMBER THEORY

Erdős-SZEMERÉDI (1983)
There is a constant $c>0$ such that $|A+A|$ or $|A \cdot A|$ is $\gtrsim|A|^{1+c}$.

COMBINATORIAL NUMBER THEORY

ERDŐS-SZEMERÉDI (1983)

There is a constant $c>0$ such that $|A+A|$ or $|A \cdot A|$ is $\gtrsim|A|^{1+c}$.

COMBINATORIAL NUMBER THEORY

ERDŐs-Szemerédi (1983)

There is a constant $c>0$ such that $|A+A|$ or $|A \cdot A|$ is $\gtrsim|A|^{1+c}$.

COMBINATORIAL NUMBER THEORY

ERDŐS-SzEMERÉDI (1983)

There is a constant $c>0$ such that $|A+A|$ or $|A \cdot A|$ is $\gtrsim|A|^{1+c}$.

COMBINATORIAL NUMBER THEORY

ERDŐS-SZEMERÉDI (1983)
There is a constant $c>0$ such that $|A+A|$ or $|A \cdot A|$ is $\gtrsim|A|^{1+c}$.

COMBINATORIAL NUMBER THEORY

ERDŐS-SZEMERÉDI (1983)
There is a constant $c>0$ such that $|A+A|$ or $|A \cdot A|$ is $\gtrsim|A|^{1+c}$.

COMBINATORIAL NUMBER THEORY

ERDŐS-SzEMERÉDI (1983)
There is a constant $c>0$ such that $|A+A|$ or $|A \cdot A|$ is $\gtrsim|A|^{1+c}$.

COMBINATORIAL NUMBER THEORY

ERDŐS-SZEMERÉDI (1983)
There is a constant $c>0$ such that $|A+A|$ or $|A \cdot A|$ is $\gtrsim|A|^{1+c}$.

COMBINATORIAL NUMBER THEORY

ERDŐS-SzEMERÉDI (1983)

There is a constant $c>0$ such that $|A+A|$ or $|A \cdot A|$ is $\gtrsim|A|^{1+c}$.

COMBINATORIAL NUMBER THEORY

ERDŐS-SZEMERÉDI (1983)
There is a constant $c>0$ such that $|A+A|$ or $|A \cdot A|$ is $\gtrsim|A|^{1+c}$.

COMBINATORIAL NUMBER THEORY

ERDŐs-Szemerédi (1983)

There is a constant $c>0$ such that $|A+A|$ or $|A \cdot A|$ is $\gtrsim|A|^{1+c}$.

COMBINATORIAL NUMBER THEORY

ERDőS-SzEMERÉDI (1983)

There is a constant $c>0$ such that $|A+A|$ or $|A \cdot A|$ is $\gtrsim|A|^{1+c}$.

COMBINATORIAL NUMBER THEORY

ERDŐS-SZEMERÉDI (1983)
There is a constant $c>0$ such that $|A+A|$ or $|A \cdot A|$ is $\gtrsim|A|^{1+c}$.

COMBINATORIAL NUMBER THEORY

ERDŐS-SZEMERÉDI (1983)

There is a constant $c>0$ such that $|A+A|$ or $|A \cdot A|$ is $\gtrsim|A|^{1+c}$.

COMBINATORIAL NUMBER THEORY

ERDŐS-SzEMERÉDI (1983)

There is a constant $c>0$ such that $|A+A|$ or $|A \cdot A|$ is $\gtrsim|A|^{1+c}$.

SUM-PRODUCT RESULTS

ERDŐS-SZEMERÉDI (1983)

There is a constant $c>0$ such that $|A+A|$ or $|A \cdot A|$ is $\gtrsim|A|^{1+c}$.

Conjecture (Erdős-Szemerédi)

The theorem should hold for any $c<1$.

SUM-PRODUCT RESULTS

ERDŐS-SzEMERÉDI (1983)

There is a constant $c>0$ such that $|A+A|$ or $|A \cdot A|$ is $\gtrsim|A|^{1+c}$.

Conjecture (Erdős-Szemerédi)

The theorem should hold for any $c<1$.

Progress:

- $c=\frac{1}{31}$, Nathanson (1997)
- $c=\frac{1}{15}$, Ford (1998)

ERDŐS-SzEMERÉDI (1983)

There is a constant $c>0$ such that $|A+A|$ or $|A \cdot A|$ is $\gtrsim|A|^{1+c}$.

Conjecture (Erdős-Szemerédi)

The theorem should hold for any $c<1$.

Progress:

- $c=\frac{1}{31}$, Nathanson (1997)
- $c=\frac{1}{15}$, Ford (1998)
- $c=\frac{1}{4}$, Elekes (1997)
- $c=\frac{3}{11}$, Solymosi (2005)
- $c=\frac{1}{3}-\epsilon$, Solymosi (2008)

SUM-PRODUCT VIA INCIDENCES

Proof that $|A+A|$ or $|A \cdot A|$ is always $\gtrsim n^{5 / 4}$, when $|A|=n$.

SuM-Product via incidences

Proof that $|A+A|$ or $|A \cdot A|$ is always $\gtrsim \mathbf{n}^{\mathbf{5 / 4}}$, when $|A|=\mathbf{n}$.

- Let $\ell_{a, b}$ be the line $y=a(x-b)$, and let $L=\left\{\ell_{a, b}: a, b \in A\right\}$.
- Let P be the set of points (x, y) with $x \in A+A$ and $y \in A \cdot A$.

Sum-Product via incidences

Proof that $|A+A|$ or $|A \cdot A|$ is always $\gtrsim \mathbf{n}^{\mathbf{5 / 4}}$, when $|A|=\mathbf{n}$.

- Let $\ell_{a, b}$ be the line $y=a(x-b)$, and let $L=\left\{\ell_{a, b}: a, b \in A\right\}$.
- Let P be the set of points (x, y) with $x \in A+A$ and $y \in A \cdot A$.
- Each $\ell_{a, b}$ contains every point $(c+b, a c)$ with $c \in A$. Hence $\ell_{a, b}$ intersects $\geq|A|=n$ points of P.

Proof that $|A+A|$ or $|A \cdot A|$ is always $\gtrsim \mathbf{n}^{\mathbf{5 / 4}}$, when $|\mathbf{A}|=\mathbf{n}$.

- Let $\ell_{a, b}$ be the line $y=a(x-b)$, and let $L=\left\{\ell_{a, b}: a, b \in A\right\}$.
- Let P be the set of points (x, y) with $x \in A+A$ and $y \in A \cdot A$.
- Each $\ell_{a, b}$ contains every point $(c+b, a c)$ with $c \in A$. Hence $\ell_{a, b}$ intersects $\geq|A|=n$ points of P.
- There are n^{2} lines $\ell_{a, b}$, so there are $I \geq n^{3}$ total incidences.
- Szemerédi-Trotter implies that $I \leq 4\left(|L|^{2 / 3}|P|^{2 / 3}+|L|+|P|\right)$.

Proof that $|A+A|$ or $|A \cdot A|$ is always $\gtrsim \mathbf{n}^{\mathbf{5 / 4}}$, when $|\mathbf{A}|=\mathbf{n}$.

- Let $\ell_{a, b}$ be the line $y=a(x-b)$, and let $L=\left\{\ell_{a, b}: a, b \in A\right\}$.
- Let P be the set of points (x, y) with $x \in A+A$ and $y \in A \cdot A$.
- Each $\ell_{a, b}$ contains every point $(c+b, a c)$ with $c \in A$. Hence $\ell_{a, b}$ intersects $\geq|A|=n$ points of P.
- There are n^{2} lines $\ell_{a, b}$, so there are $I \geq n^{3}$ total incidences.
- Szemerédi-Trotter implies that $I \leq 4\left(|L|^{2 / 3}|P|^{2 / 3}+|L|+|P|\right)$.
- $|L|=n^{2} \leq|P|$

Proof that $|A+A|$ or $|A \cdot A|$ is always $\gtrsim \mathbf{n}^{\mathbf{5 / 4}}$, when $|A|=\mathbf{n}$.

- Let $\ell_{a, b}$ be the line $y=a(x-b)$, and let $L=\left\{\ell_{a, b}: a, b \in A\right\}$.
- Let P be the set of points (x, y) with $x \in A+A$ and $y \in A \cdot A$.
- Each $\ell_{a, b}$ contains every point $(c+b, a c)$ with $c \in A$. Hence $\ell_{a, b}$ intersects $\geq|A|=n$ points of P.
- There are n^{2} lines $\ell_{a, b}$, so there are $I \geq n^{3}$ total incidences.
- Szemerédi-Trotter implies that $I \leq 4\left(|L|^{2 / 3}|P|^{2 / 3}+|L|+|P|\right)$.
- $|L|=n^{2} \leq|P|$, and $|P| \leq|L|^{2 / 3}|P|^{2 / 3}$ since $|P| \leq n^{4}=|L|^{2}$.

Proof that $|A+A|$ or $|A \cdot A|$ is always $\gtrsim \mathbf{n}^{\mathbf{5 / 4}}$, when $|A|=\mathbf{n}$.

- Let $\ell_{a, b}$ be the line $y=a(x-b)$, and let $L=\left\{\ell_{a, b}: a, b \in A\right\}$.
- Let P be the set of points (x, y) with $x \in A+A$ and $y \in A \cdot A$.
- Each $\ell_{a, b}$ contains every point $(c+b, a c)$ with $c \in A$. Hence $\ell_{a, b}$ intersects $\geq|A|=n$ points of P.
- There are n^{2} lines $\ell_{a, b}$, so there are $I \geq n^{3}$ total incidences.
- Szemerédi-Trotter implies that $I \leq 4\left(|L|^{2 / 3}|P|^{2 / 3}+|L|+|P|\right)$.
- $|L|=n^{2} \leq|P|$, and $|P| \leq|L|^{2 / 3}|P|^{2 / 3}$ since $|P| \leq n^{4}=|L|^{2}$.

$$
I \leq 4 \cdot 3 \cdot|L|^{2 / 3}|P|^{2 / 3}
$$

Proof that $|A+A|$ or $|A \cdot A|$ is always $\gtrsim \mathbf{n}^{\mathbf{5 / 4}}$, when $|A|=\mathbf{n}$.

- Let $\ell_{a, b}$ be the line $y=a(x-b)$, and let $L=\left\{\ell_{a, b}: a, b \in A\right\}$.
- Let P be the set of points (x, y) with $x \in A+A$ and $y \in A \cdot A$.
- Each $\ell_{a, b}$ contains every point $(c+b, a c)$ with $c \in A$. Hence $\ell_{a, b}$ intersects $\geq|A|=n$ points of P.
- There are n^{2} lines $\ell_{a, b}$, so there are $I \geq n^{3}$ total incidences.
- Szemerédi-Trotter implies that $I \leq 4\left(|L|^{2 / 3}|P|^{2 / 3}+|L|+|P|\right)$.
- $|L|=n^{2} \leq|P|$, and $|P| \leq|L|^{2 / 3}|P|^{2 / 3}$ since $|P| \leq n^{4}=|L|^{2}$.

$$
n^{9 / 3}=n^{3} \leq 1 \leq 4 \cdot 3 \cdot|L|^{2 / 3}|P|^{2 / 3}
$$

Proof that $|A+A|$ or $|A \cdot A|$ is always $\gtrsim \mathbf{n}^{\mathbf{5 / 4}}$, when $|A|=\mathbf{n}$.

- Let $\ell_{a, b}$ be the line $y=a(x-b)$, and let $L=\left\{\ell_{a, b}: a, b \in A\right\}$.
- Let P be the set of points (x, y) with $x \in A+A$ and $y \in A \cdot A$.
- Each $\ell_{a, b}$ contains every point $(c+b, a c)$ with $c \in A$. Hence $\ell_{a, b}$ intersects $\geq|A|=n$ points of P.
- There are n^{2} lines $\ell_{a, b}$, so there are $I \geq n^{3}$ total incidences.
- Szemerédi-Trotter implies that $I \leq 4\left(|L|^{2 / 3}|P|^{2 / 3}+|L|+|P|\right)$.
- $|L|=n^{2} \leq|P|$, and $|P| \leq|L|^{2 / 3}|P|^{2 / 3}$ since $|P| \leq n^{4}=|L|^{2}$.

$$
n^{9 / 3}=n^{3} \leq 1 \leq 4 \cdot 3 \cdot|L|^{2 / 3}|P|^{2 / 3}=12 \cdot n^{4 / 3} \cdot|P|^{2 / 3}
$$

Proof that $|A+A|$ or $|A \cdot A|$ is always $\gtrsim \mathbf{n}^{\mathbf{5 / 4}}$, when $|A|=\mathbf{n}$.

- Let $\ell_{a, b}$ be the line $y=a(x-b)$, and let $L=\left\{\ell_{a, b}: a, b \in A\right\}$.
- Let P be the set of points (x, y) with $x \in A+A$ and $y \in A \cdot A$.
- Each $\ell_{a, b}$ contains every point $(c+b, a c)$ with $c \in A$. Hence $\ell_{a, b}$ intersects $\geq|A|=n$ points of P.
- There are n^{2} lines $\ell_{a, b}$, so there are $I \geq n^{3}$ total incidences.
- Szemerédi-Trotter implies that $I \leq 4\left(|L|^{2 / 3}|P|^{2 / 3}+|L|+|P|\right)$.
- $|L|=n^{2} \leq|P|$, and $|P| \leq|L|^{2 / 3}|P|^{2 / 3}$ since $|P| \leq n^{4}=|L|^{2}$.

$$
\begin{aligned}
n^{9 / 3}=n^{3} \leq I & \leq 4 \cdot 3 \cdot|L|^{2 / 3}|P|^{2 / 3}=12 \cdot n^{4 / 3} \cdot|P|^{2 / 3} \\
\frac{1}{12} n^{5 / 3} & \leq|P|^{2 / 3} \\
0.024 n^{5 / 2} & \leq|P|
\end{aligned}
$$

Proof that $|A+A|$ or $|A \cdot A|$ is always $\gtrsim \mathbf{n}^{\mathbf{5 / 4}}$, when $|\mathbf{A}|=\mathbf{n}$.

- Let $\ell_{a, b}$ be the line $y=a(x-b)$, and let $L=\left\{\ell_{a, b}: a, b \in A\right\}$.
- Let P be the set of points (x, y) with $x \in A+A$ and $y \in A \cdot A$.
- Each $\ell_{a, b}$ contains every point $(c+b, a c)$ with $c \in A$. Hence $\ell_{a, b}$ intersects $\geq|A|=n$ points of P.
- There are n^{2} lines $\ell_{a, b}$, so there are $I \geq n^{3}$ total incidences.
- Szemerédi-Trotter implies that $I \leq 4\left(|L|^{2 / 3}|P|^{2 / 3}+|L|+|P|\right)$.
- $|L|=n^{2} \leq|P|$, and $|P| \leq|L|^{2 / 3}|P|^{2 / 3}$ since $|P| \leq n^{4}=|L|^{2}$.

$$
\begin{aligned}
n^{9 / 3}=n^{3} \leq I & \leq 4 \cdot 3 \cdot|L|^{2 / 3}|P|^{2 / 3}=12 \cdot n^{4 / 3} \cdot|P|^{2 / 3} \\
\frac{1}{12} n^{5 / 3} & \leq|P|^{2 / 3} \\
0.024 n^{5 / 2} & \leq|P|=|A+A| \cdot|A \cdot A| .
\end{aligned}
$$

Therefore, $|A+A|$ or $|A \cdot A|$ must be $\gtrsim n^{5 / 4}$.

IPAM Fall 2009

Los Angeles, California

Combinatorics:
Methods and Applications in
Mathematics and Computer Science

Workshop 1. Probabilistic techniques and applications
Workshop 2. Combinatorial geometry
Workshop 3. Topics in graphs and hypergraphs
Workshop 4. Analytical methods in combinatorics, additive number theory and computer science

Organizers: N. Alon, G. Kalai, J. Pach, V. Sós, A. Steger, B. Sudakov, T. Tao.

